2.1.67 Problem 67
Internal
problem
ID
[10053]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
67
Date
solved
:
Thursday, November 27, 2025 at 10:07:36 AM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
Solved as second order missing x ode
Time used: 1.585 (sec)
Solve
\begin{align*}
3 y y^{\prime \prime }+y&=5 \\
\end{align*}
This is missing independent variable second order ode. Solved by reduction of order by
using substitution which makes the dependent variable
\(y\) an independent variable. Using
\begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} 3 y p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right )+y = 5 \end{align*}
Which is now solved as first order ode for \(p(y)\).
Solve The ode
\begin{equation}
p^{\prime } = -\frac {y -5}{3 y p}
\end{equation}
is separable as it can be written as
\begin{align*} p^{\prime }&= -\frac {y -5}{3 y p}\\ &= f(y) g(p) \end{align*}
Where
\begin{align*} f(y) &= -\frac {y -5}{3 y}\\ g(p) &= \frac {1}{p} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(p)} \,dp} &= \int { f(y) \,dy} \\
\int { p\,dp} &= \int { -\frac {y -5}{3 y} \,dy} \\
\end{align*}
\[
\frac {p^{2}}{2}=-\frac {y}{3}+\ln \left (y^{{5}/{3}}\right )+c_1
\]
Solving for
\(p\) gives
\begin{align*}
p &= -\frac {\sqrt {18 \ln \left (y^{{5}/{3}}\right )+18 c_1 -6 y}}{3} \\
p &= \frac {\sqrt {18 \ln \left (y^{{5}/{3}}\right )+18 c_1 -6 y}}{3} \\
\end{align*}
For solution (1) found earlier, since
\(p=y^{\prime }\) then we now have a new
first order ode to solve which is
\begin{align*} y^{\prime } = -\frac {\sqrt {18 \ln \left (y^{{5}/{3}}\right )+18 c_1 -6 y}}{3} \end{align*}
Solve Unable to integrate (or intergal too complicated), and since no initial conditions are given,
then the result can be written as
\[ \int _{}^{y}-\frac {3}{\sqrt {18 \ln \left (\tau ^{{5}/{3}}\right )+18 c_1 -6 \tau }}d \tau = x +c_2 \]
For solution (2) found earlier, since
\(p=y^{\prime }\) then we now have a new
first order ode to solve which is
\begin{align*} y^{\prime } = \frac {\sqrt {18 \ln \left (y^{{5}/{3}}\right )+18 c_1 -6 y}}{3} \end{align*}
Solve Unable to integrate (or intergal too complicated), and since no initial conditions are given,
then the result can be written as
\[ \int _{}^{y}\frac {3}{\sqrt {18 \ln \left (\tau ^{{5}/{3}}\right )+18 c_1 -6 \tau }}d \tau = x +c_3 \]
Summary of solutions found
\begin{align*}
\int _{}^{y}-\frac {3}{\sqrt {18 \ln \left (\tau ^{{5}/{3}}\right )+18 c_1 -6 \tau }}d \tau &= x +c_2 \\
\int _{}^{y}\frac {3}{\sqrt {18 \ln \left (\tau ^{{5}/{3}}\right )+18 c_1 -6 \tau }}d \tau &= x +c_3 \\
\end{align*}
✓ Maple. Time used: 0.014 (sec). Leaf size: 59
ode:=3*y(x)*diff(diff(y(x),x),x)+y(x) = 5;
dsolve(ode,y(x), singsol=all);
\begin{align*}
-3 \int _{}^{y}\frac {1}{\sqrt {30 \ln \left (\textit {\_a} \right )+9 c_1 -6 \textit {\_a}}}d \textit {\_a} -x -c_2 &= 0 \\
3 \int _{}^{y}\frac {1}{\sqrt {30 \ln \left (\textit {\_a} \right )+9 c_1 -6 \textit {\_a}}}d \textit {\_a} -x -c_2 &= 0 \\
\end{align*}
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Computing symmetries using: way = 3
-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE, diff(_b(_a),_a)*_b(_a)+1/3*(_a-5)/_a = 0, _b(
_a)
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful
✓ Mathematica. Time used: 0.201 (sec). Leaf size: 41
ode=3*y[x]*D[y[x],{x,2}]+y[x]==5;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
\text {Solve}\left [\int _1^{y(x)}\frac {1}{\sqrt {c_1+\frac {2}{3} (5 \log (K[1])-K[1])}}dK[1]{}^2=(x+c_2){}^2,y(x)\right ]
\]
✓ Sympy. Time used: 165.567 (sec). Leaf size: 51
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(3*y(x)*Derivative(y(x), (x, 2)) + y(x) - 5,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ \sqrt {3} \int \limits ^{y{\left (x \right )}} \frac {1}{\sqrt {- 2 u + C_{1} + 10 \log {\left (u \right )}}}\, du = C_{2} + x, \ \sqrt {3} \int \limits ^{y{\left (x \right )}} \frac {1}{\sqrt {- 2 u + C_{1} + 10 \log {\left (u \right )}}}\, du = C_{2} - x\right ]
\]