2.1.61 Problem 61
Internal
problem
ID
[10047]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
61
Date
solved
:
Thursday, November 27, 2025 at 10:07:33 AM
CAS
classification
:
[[_2nd_order, _quadrature]]
Solved by factoring the differential equation
Time used: 0.009 (sec)
Solve
\begin{align*}
y y^{\prime \prime }&=0 \\
\end{align*}
Writing the ode as
\begin{align*} \left (y\right )\left (y^{\prime \prime }\right )&=0 \end{align*}
Therefore we need to solve the following equations
\begin{align*}
\tag{1} y &= 0 \\
\tag{2} y^{\prime \prime } &= 0 \\
\end{align*}
Now each of the above equations is solved in
turn.
Solving equation (1)
Solving for \(y\) from
\begin{align*} y = 0 \end{align*}
Solving gives
\begin{align*}
y &= 0 \\
\end{align*}
Solving equation (2)
Integrating twice gives the solution
\[ y= c_1 x + c_2 \]
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= c_1 x +c_2 \\
\end{align*}
✓ Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=y(x)*diff(diff(y(x),x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= 0 \\
y &= c_1 x +c_2 \\
\end{align*}
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y \left (x \right ) \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=0 \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{2}=0 \\ \bullet & {} & \textrm {Use quadratic formula to solve for}\hspace {3pt} r \\ {} & {} & r =\frac {0\pm \left (\sqrt {0}\right )}{2} \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =0 \\ \bullet & {} & \textrm {1st solution of the ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (x \right )=1 \\ \bullet & {} & \textrm {Repeated root, multiply}\hspace {3pt} y_{1}\left (x \right )\hspace {3pt}\textrm {by}\hspace {3pt} x \hspace {3pt}\textrm {to ensure linear independence}\hspace {3pt} \\ {} & {} & y_{2}\left (x \right )=x \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} y_{1}\left (x \right )+\mathit {C2} y_{2}\left (x \right ) \\ \bullet & {} & \textrm {Substitute in solutions}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C2} x +\mathit {C1} \end {array} \]
✓ Mathematica. Time used: 0.002 (sec). Leaf size: 17
ode=y[x]*D[y[x],{x,2}]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to 0\\ y(x)&\to c_2 x+c_1 \end{align*}
✓ Sympy. Time used: 0.091 (sec). Leaf size: 7
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(y(x)*Derivative(y(x), (x, 2)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = C_{1} + C_{2} x
\]