2.1.24 Problem 25
Internal
problem
ID
[10010]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
25
Date
solved
:
Monday, January 26, 2026 at 08:47:39 PM
CAS
classification
:
[_quadrature]
2.1.24.1 Solved by factoring the differential equation
Time used: 0.048 (sec)
\begin{align*}
\left (y+x \right ) y^{\prime }&=0 \\
\end{align*}
Writing the ode as \begin{align*} \left (y+x\right )\left (y^{\prime }\right )&=0 \end{align*}
Therefore we need to solve the following equations
\begin{align*}
\tag{1} y+x &= 0 \\
\tag{2} y^{\prime } &= 0 \\
\end{align*}
Now each of the above equations is solved in
turn.
Solving equation (1)
Entering zero order ode solver Solving for \(y\) from
\begin{align*} y+x = 0 \end{align*}
Solving gives
\begin{align*}
y &= -x \\
\end{align*}
Solving equation (2)
Entering first order ode quadrature solver Since the ode has the form \(y^{\prime }=f(x)\) , then we only need to
integrate \(f(x)\) .
\begin{align*} \int {dy} &= \int {0\, dx} + c_1 \\ y &= c_1 \end{align*}
Figure 2.6: Isoclines for \(y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= c_1 \\
y &= -x \\
\end{align*}
2.1.24.2 ✓ Maple. Time used: 0.001 (sec). Leaf size: 11
ode :=( x + y ( x ))* diff ( y ( x ), x ) = 0;
dsolve ( ode , y ( x ), singsol=all);
\begin{align*}
y &= -x \\
y &= c_1 \\
\end{align*}
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (x +y \left (x \right )\right ) \left (\frac {d}{d x}y \left (x \right )\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=0 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int 0d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} \end {array} \]
2.1.24.3 ✓ Mathematica. Time used: 0.002 (sec). Leaf size: 14
ode =( x + y [ x ])* D [ y [ x ], x ]==0;
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\begin{align*} y(x)&\to -x\\ y(x)&\to c_1 \end{align*}
2.1.24.4 ✓ Sympy. Time used: 0.175 (sec). Leaf size: 8
from sympy import *
x = symbols( " x " )
y = Function( " y " )
ode = Eq((x + y(x))*Derivative(y(x), x),0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
\left [ y{\left (x \right )} = - x, \ y{\left (x \right )} = C_{1}\right ]
\]
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode ( ode , func = y ( x ))
( ' factorable ' , ' nth_algebraic ' , ' 1st_exact ' , ' 1st_linear ' , ' Bernoulli ' , ' 1st_power_series ' , ' lie_group ' , ' nth_algebraic_Integral ' , ' 1st_exact_Integral ' , ' 1st_linear_Integral ' , ' Bernoulli_Integral ' )