2.1.92 Problem 90

Solved using first_order_ode_riccati
Maple
Mathematica
Sympy

Internal problem ID [10078]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 90
Date solved : Thursday, November 27, 2025 at 10:18:19 AM
CAS classification : [_Riccati]

Solved using first_order_ode_riccati

Time used: 1.296 (sec)

Solve

\begin{align*} y^{\prime }-y^{2}-x -x^{2}&=0 \\ \end{align*}
In canonical form the ODE is
\begin{align*} y' &= F(x,y)\\ &= x^{2}+y^{2}+x \end{align*}

This is a Riccati ODE. Comparing the ODE to solve

\[ y' = x^{2}+y^{2}+x \]
With Riccati ODE standard form
\[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \]
Shows that \(f_0(x)=x^{2}+x\), \(f_1(x)=0\) and \(f_2(x)=1\). Let
\begin{align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{u} \tag {1} \end{align*}

Using the above substitution in the given ODE results (after some simplification) in a second order ODE to solve for \(u(x)\) which is

\begin{align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end{align*}

But

\begin{align*} f_2' &=0\\ f_1 f_2 &=0\\ f_2^2 f_0 &=x^{2}+x \end{align*}

Substituting the above terms back in equation (2) gives

\[ u^{\prime \prime }\left (x \right )+\left (x^{2}+x \right ) u \left (x \right ) = 0 \]
Unable to solve. Will ask Maple to solve this ode now.

The solution for \(u \left (x \right )\) is

\begin{equation} \tag{3} u \left (x \right ) = c_1 \operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+c_2 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (2 x +1\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}} \end{equation}
Taking derivative gives
\begin{equation} \tag{4} u^{\prime }\left (x \right ) = \left (\frac {1}{8}+\frac {i}{2}\right ) c_1 \operatorname {hypergeom}\left (\left [\frac {5}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (2 x +1\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+c_1 \operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (-\frac {i \left (x +1\right )}{2}-\frac {i x}{2}\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+\left (\frac {1}{24}+\frac {i}{2}\right ) c_2 \operatorname {hypergeom}\left (\left [\frac {7}{4}-\frac {i}{16}\right ], \left [\frac {5}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (2 x +1\right )^{2} {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+2 c_2 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+c_2 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (2 x +1\right ) \left (-\frac {i \left (x +1\right )}{2}-\frac {i x}{2}\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}} \end{equation}
Substituting equations (3,4) into (1) results in
\begin{align*} y &= \frac {-u'}{f_2 u} \\ y &= \frac {-u'}{u} \\ y &= \frac {2 c_2 \left (i x^{2}+i x -1+\frac {1}{4} i\right ) \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+2 \left (\left (-\frac {1}{12}-i\right ) c_2 \left (x +\frac {1}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {7}{4}-\frac {i}{16}\right ], \left [\frac {5}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\frac {\left (\left (-\frac {1}{4}-i\right ) \operatorname {hypergeom}\left (\left [\frac {5}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+i \operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )\right ) c_1}{2}\right ) \left (x +\frac {1}{2}\right )}{\left (2 x +1\right ) c_2 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+c_1 \operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )} \\ \end{align*}
Doing change of constants, the above solution becomes
\[ y = -\frac {\left (\frac {1}{8}+\frac {i}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {5}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (2 x +1\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+\operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (-\frac {i \left (x +1\right )}{2}-\frac {i x}{2}\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+\left (\frac {1}{24}+\frac {i}{2}\right ) c_3 \operatorname {hypergeom}\left (\left [\frac {7}{4}-\frac {i}{16}\right ], \left [\frac {5}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (2 x +1\right )^{2} {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+2 c_3 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+c_3 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (2 x +1\right ) \left (-\frac {i \left (x +1\right )}{2}-\frac {i x}{2}\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}}{\operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}+c_3 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right ) \left (2 x +1\right ) {\mathrm e}^{-\frac {i x \left (x +1\right )}{2}}} \]
Simplifying the above gives
\begin{align*} y &= \frac {2 c_3 \left (i x^{2}+i x -1+\frac {1}{4} i\right ) \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+2 \left (\left (-\frac {1}{12}-i\right ) c_3 \left (x +\frac {1}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {7}{4}-\frac {i}{16}\right ], \left [\frac {5}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\left (-\frac {1}{8}-\frac {i}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {5}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\frac {i \operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )}{2}\right ) \left (x +\frac {1}{2}\right )}{\left (2 x +1\right ) c_3 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )} \\ \end{align*}
Figure 2.181: Slope field \(y^{\prime }-y^{2}-x -x^{2} = 0\)

Summary of solutions found

\begin{align*} y &= \frac {2 c_3 \left (i x^{2}+i x -1+\frac {1}{4} i\right ) \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+2 \left (\left (-\frac {1}{12}-i\right ) c_3 \left (x +\frac {1}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {7}{4}-\frac {i}{16}\right ], \left [\frac {5}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\left (-\frac {1}{8}-\frac {i}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {5}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\frac {i \operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )}{2}\right ) \left (x +\frac {1}{2}\right )}{\left (2 x +1\right ) c_3 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )} \\ \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 155
ode:=diff(y(x),x)-y(x)^2-x-x^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 c_1 \left (i x^{2}+i x -1+\frac {1}{4} i\right ) \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+2 \left (\left (-\frac {1}{12}-i\right ) c_1 \left (x +\frac {1}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {7}{4}-\frac {i}{16}\right ], \left [\frac {5}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\left (-\frac {1}{8}-\frac {i}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {5}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\frac {i \operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )}{2}\right ) \left (x +\frac {1}{2}\right )}{\left (2 x +1\right ) c_1 \operatorname {hypergeom}\left (\left [\frac {3}{4}-\frac {i}{16}\right ], \left [\frac {3}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )+\operatorname {hypergeom}\left (\left [\frac {1}{4}-\frac {i}{16}\right ], \left [\frac {1}{2}\right ], \frac {i \left (2 x +1\right )^{2}}{4}\right )} \]

Maple trace

Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati Special 
trying Riccati sub-methods: 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE, diff(diff(y(x),x),x) = (-x^2-x)*y(x), y(x) 
      *** Sublevel 2 *** 
      Methods for second order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      checking if the LODE has constant coefficients 
      checking if the LODE is of Euler type 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Trying a Liouvillian solution using Kovacics algorithm 
      <- No Liouvillian solutions exists 
      -> Trying a solution in terms of special functions: 
         -> Bessel 
         -> elliptic 
         -> Legendre 
         -> Whittaker 
            -> hyper3: Equivalence to 1F1 under a power @ Moebius 
         -> hypergeometric 
            -> heuristic approach 
            -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
            <- hyper3 successful: indirect Equivalence to 0F1 under ``^ @ Moebi\ 
us`` is resolved 
         <- hypergeometric successful 
      <- special function solution successful 
   <- Riccati to 2nd Order successful
 

Maple step by step

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )-y \left (x \right )^{2}-x -x^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=y \left (x \right )^{2}+x +x^{2} \end {array} \]
Mathematica. Time used: 0.19 (sec). Leaf size: 234
ode=D[y[x],x]-y[x]^2-x-x^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {i \left ((2 x+1) \operatorname {ParabolicCylinderD}\left (-\frac {1}{2}-\frac {i}{8},\left (-\frac {1}{2}+\frac {i}{2}\right ) (2 x+1)\right )-c_1 (2 x+1) \operatorname {ParabolicCylinderD}\left (-\frac {1}{2}+\frac {i}{8},(1+i) x+\left (\frac {1}{2}+\frac {i}{2}\right )\right )+(2+2 i) \left (\operatorname {ParabolicCylinderD}\left (\frac {1}{2}-\frac {i}{8},\left (-\frac {1}{2}+\frac {i}{2}\right ) (2 x+1)\right )-i c_1 \operatorname {ParabolicCylinderD}\left (\frac {1}{2}+\frac {i}{8},(1+i) x+\left (\frac {1}{2}+\frac {i}{2}\right )\right )\right )\right )}{2 \left (\operatorname {ParabolicCylinderD}\left (-\frac {1}{2}-\frac {i}{8},\left (-\frac {1}{2}+\frac {i}{2}\right ) (2 x+1)\right )+c_1 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2}+\frac {i}{8},(1+i) x+\left (\frac {1}{2}+\frac {i}{2}\right )\right )\right )}\\ y(x)&\to \frac {(1+i) \operatorname {ParabolicCylinderD}\left (\frac {1}{2}+\frac {i}{8},(1+i) x+\left (\frac {1}{2}+\frac {i}{2}\right )\right )}{\operatorname {ParabolicCylinderD}\left (-\frac {1}{2}+\frac {i}{8},(1+i) x+\left (\frac {1}{2}+\frac {i}{2}\right )\right )}-\frac {1}{2} i (2 x+1) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - x - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list