2.3.21 Problem 21
Internal
problem
ID
[10153]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
3.0
Problem
number
:
21
Date
solved
:
Thursday, November 27, 2025 at 10:22:01 AM
CAS
classification
:
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]
Solved as second order missing y ode
Time used: 0.411 (sec)
Solve
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
\end{align*}
This is second order ode with missing dependent variable
\(y\). Let
\begin{align*} u(x) &= y^{\prime } \end{align*}
Then
\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} \left (x^{2}+1\right ) u^{\prime }\left (x \right )+1+u \left (x \right )^{2} = 0 \end{align*}
Which is now solved for \(u(x)\) as first order ode.
Solve The ode
\begin{equation}
u^{\prime }\left (x \right ) = -\frac {u \left (x \right )^{2}+1}{x^{2}+1}
\end{equation}
is separable as it can be written as
\begin{align*} u^{\prime }\left (x \right )&= -\frac {u \left (x \right )^{2}+1}{x^{2}+1}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= \frac {1}{x^{2}+1}\\ g(u) &= -u^{2}-1 \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx} \\
\int { \frac {1}{-u^{2}-1}\,du} &= \int { \frac {1}{x^{2}+1} \,dx} \\
\end{align*}
\[
-\arctan \left (u \left (x \right )\right )=\arctan \left (x \right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values
\(g(u)\) is zero, since we had to divide by this above. Solving
\(g(u)=0\) or
\[
-u^{2}-1=0
\]
for
\(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=-i\\ u \left (x \right )&=i \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
-\arctan \left (u \left (x \right )\right ) &= \arctan \left (x \right )+c_1 \\
u \left (x \right ) &= -i \\
u \left (x \right ) &= i \\
\end{align*}
Solving for
\(u \left (x \right )\) gives
\begin{align*}
u \left (x \right ) &= -i \\
u \left (x \right ) &= i \\
u \left (x \right ) &= -\tan \left (\arctan \left (x \right )+c_1 \right ) \\
\end{align*}
In summary, these are the solution
found for
\(y\) \begin{align*}
u \left (x \right ) &= -i \\
u \left (x \right ) &= i \\
u \left (x \right ) &= -\tan \left (\arctan \left (x \right )+c_1 \right ) \\
\end{align*}
For solution
\(u \left (x \right ) = -i\), since
\(u=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = -i \end{align*}
Solve Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {-i\, dx}\\ y &= -i x + c_2 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= -i x +c_2 \\
\end{align*}
For solution
\(u \left (x \right ) = i\), since
\(u=y^{\prime }\) then we now have a new first
order ode to solve which is
\begin{align*} y^{\prime } = i \end{align*}
Solve Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {i\, dx}\\ y &= i x + c_3 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= i x +c_3 \\
\end{align*}
For solution
\(u \left (x \right ) = -\tan \left (\arctan \left (x \right )+c_1 \right )\), since
\(u=y^{\prime }\) then we now have a new first
order ode to solve which is
\begin{align*} y^{\prime } = -\tan \left (\arctan \left (x \right )+c_1 \right ) \end{align*}
Solve Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} y&= \int -\tan \left (\arctan \left (x \right )+c_1 \right )d x +c_4 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= \int -\tan \left (\arctan \left (x \right )+c_1 \right )d x +c_4 \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= -i x +c_2 \\
y &= i x +c_3 \\
y &= \int -\tan \left (\arctan \left (x \right )+c_1 \right )d x +c_4 \\
\end{align*}
✓ Maple. Time used: 0.010 (sec). Leaf size: 33
ode:=(x^2+1)*diff(diff(y(x),x),x)+1+diff(y(x),x)^2 = 0;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {\ln \left (c_1 x -1\right ) c_1^{2}+c_2 \,c_1^{2}+c_1 x +\ln \left (c_1 x -1\right )}{c_1^{2}}
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Computing symmetries using: way = 3
-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE, diff(_b(_a),_a) = -(_b(_a)^2+1)/(_a^2+1), _b(
_a)
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (x^{2}+1\right ) \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+1+\left (\frac {d}{d x}y \left (x \right )\right )^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & \left (x^{2}+1\right ) \left (\frac {d}{d x}u \left (x \right )\right )+1+u \left (x \right )^{2}=0 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )=\frac {-1-u \left (x \right )^{2}}{x^{2}+1} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}u \left (x \right )}{-1-u \left (x \right )^{2}}=\frac {1}{x^{2}+1} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}u \left (x \right )}{-1-u \left (x \right )^{2}}d x =\int \frac {1}{x^{2}+1}d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\arctan \left (u \left (x \right )\right )=\arctan \left (x \right )+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=-\tan \left (\arctan \left (x \right )+\mathit {C1} \right ) \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=-\tan \left (\arctan \left (x \right )+\mathit {C1} \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right ) \\ {} & {} & \frac {d}{d x}y \left (x \right )=-\tan \left (\arctan \left (x \right )+\mathit {C1} \right ) \\ \bullet & {} & \textrm {Integrate both sides to solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int -\tan \left (\arctan \left (x \right )+\mathit {C1} \right )d x +\mathit {C2} \\ \bullet & {} & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {\mathrm {I} x \,{\mathrm e}^{4 \,\mathrm {I} \mathit {C1}}}{\left (1-{\mathrm e}^{2 \,\mathrm {I} \mathit {C1}}\right )^{2}}-\frac {4 \ln \left (\mathrm {I} \,{\mathrm e}^{2 \,\mathrm {I} \mathit {C1}}-x \,{\mathrm e}^{2 \,\mathrm {I} \mathit {C1}}+\mathrm {I}+x \right ) {\mathrm e}^{2 \,\mathrm {I} \mathit {C1}}}{\left (1-{\mathrm e}^{2 \,\mathrm {I} \mathit {C1}}\right )^{2}}-\frac {\mathrm {I} x}{\left (1-{\mathrm e}^{2 \,\mathrm {I} \mathit {C1}}\right )^{2}}+\mathit {C2} \end {array} \]
✓ Mathematica. Time used: 0.574 (sec). Leaf size: 54
ode=(1+x^2)*D[y[x],{x,2}]+1+(D[y[x],x])^2==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \int _1^x\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1]^2+1}dK[1]\&\right ]\left [c_1+\int _1^{K[3]}-\frac {1}{K[2]^2+1}dK[2]\right ]dK[3]+c_2 \end{align*}
✓ Sympy. Time used: 1.058 (sec). Leaf size: 24
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq((x**2 + 1)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2 + 1,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = C_{1} + \int \tan {\left (C_{2} - \operatorname {atan}{\left (x \right )} \right )}\, dx, \ y{\left (x \right )} = C_{1} + \int \tan {\left (C_{2} - \operatorname {atan}{\left (x \right )} \right )}\, dx\right ]
\]