2.3.29 Problem 29
Internal
problem
ID
[10161]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
3.0
Problem
number
:
29
Date
solved
:
Monday, January 26, 2026 at 09:16:27 PM
CAS
classification
:
[[_homogeneous, `class D`]]
2.3.29.1 Solved using first_order_ode_homog_type_D
0.335 (sec)
Entering first order ode homog type D solver
\begin{align*}
y^{\prime }&=2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \\
\end{align*}
Writing the ode as \begin{align*} y^{\prime }&=2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x}\tag {A} \end{align*}
The given ode has the form
\begin{equation} y^{\prime }=\frac {y}{x}+g\left ( x\right ) f\left ( b\frac {y}{x}\right ) ^{\frac {n}{m}}\tag {1}\end{equation}
Where \(b\) is scalar and \(g\left ( x\right ) \) is function of \(x\) and \(n,m\) are integers. The
solution is given in Kamke page 20. Using the substitution \(y\left ( x\right ) =u\left ( x\right ) x\) then\[ \frac {dy}{dx}=\frac {du}{dx}x+u \]
Hence the given ode
becomes\begin{align} \frac {du}{dx}x+u & =u+g\left ( x\right ) f\left ( bu\right ) ^{\frac {n}{m}}\nonumber \\ u^{\prime } & =\frac {1}{x}g\left ( x\right ) f\left ( bu\right ) ^{\frac {n}{m}}\tag {2}\end{align}
The above ode is always separable. This is easily solved for \(u\) assuming the integration can be
resolved, and then the solution to the original ode becomes \(y=ux\). Comapring the given ode (A) with
the form (1) shows that
\begin{align*} g \left (x \right )&=2 x^{2}\\ b&=1\\ f \left (\frac {b x}{y}\right )&=\sin \left (\frac {y}{x}\right ) \end{align*}
Substituting the above in (2) results in the \(u(x)\) ode as
\begin{align*} u^{\prime }\left (x \right ) = 2 x \sin \left (u \left (x \right )\right )^{2} \end{align*}
Which is now solved as separable Converting \(-\cot \left (u \left (x \right )\right ) = x^{2}+c_1\) back to \(y\) gives
\begin{align*} -\cot \left (\frac {y}{x}\right ) = x^{2}+c_1 \end{align*}
Converting \(u \left (x \right ) = 0\) back to \(y\) gives
\begin{align*} y = 0 \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= 0 \\
y &= \left (\pi -\operatorname {arccot}\left (x^{2}+c_1 \right )\right ) x \\
\end{align*}
|
|
|
| Direction field \(y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x}\) | Isoclines for \(y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x}\) |
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= \left (\pi -\operatorname {arccot}\left (x^{2}+c_1 \right )\right ) x \\
\end{align*}
2.3.29.2 Solved using first_order_ode_homog_type_D2
0.289 (sec)
Entering first order ode homog type D2 solver
\begin{align*}
y^{\prime }&=2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \\
\end{align*}
Applying change of variables \(y = u \left (x \right ) x\), then the ode
becomes \begin{align*} u^{\prime }\left (x \right ) x +u \left (x \right ) = 2 x^{2} \sin \left (u \left (x \right )\right )^{2}+u \left (x \right ) \end{align*}
Which is now solved The ode
\begin{equation}
u^{\prime }\left (x \right ) = 2 x \sin \left (u \left (x \right )\right )^{2}
\end{equation}
is separable as it can be written as \begin{align*} u^{\prime }\left (x \right )&= 2 x \sin \left (u \left (x \right )\right )^{2}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= 2 x\\ g(u) &= \sin \left (u \right )^{2} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx} \\
\int { \frac {1}{\sin \left (u \right )^{2}}\,du} &= \int { 2 x \,dx} \\
\end{align*}
\[
-\cot \left (u \left (x \right )\right )=x^{2}+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values \(g(u)\) is zero, since we had to divide by this above. Solving \(g(u)=0\) or \[
\sin \left (u \right )^{2}=0
\]
for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=0 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
-\cot \left (u \left (x \right )\right ) &= x^{2}+c_1 \\
u \left (x \right ) &= 0 \\
\end{align*}
Converting \(-\cot \left (u \left (x \right )\right ) = x^{2}+c_1\) back to \(y\) gives \begin{align*} -\cot \left (\frac {y}{x}\right ) = x^{2}+c_1 \end{align*}
Converting \(u \left (x \right ) = 0\) back to \(y\) gives
\begin{align*} y = 0 \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= 0 \\
y &= \left (\pi -\operatorname {arccot}\left (x^{2}+c_1 \right )\right ) x \\
\end{align*}
|
|
|
| Direction field \(y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x}\) | Isoclines for \(y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x}\) |
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= \left (\pi -\operatorname {arccot}\left (x^{2}+c_1 \right )\right ) x \\
\end{align*}
2.3.29.3 ✓ Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=diff(y(x),x) = 2*x^2*sin(y(x)/x)^2+y(x)/x;
dsolve(ode,y(x), singsol=all);
\[
y = \left (\frac {\pi }{2}+\arctan \left (x^{2}+2 c_1 \right )\right ) x
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=2 x^{2} \sin \left (\frac {y \left (x \right )}{x}\right )^{2}+\frac {y \left (x \right )}{x} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=2 x^{2} \sin \left (\frac {y \left (x \right )}{x}\right )^{2}+\frac {y \left (x \right )}{x} \end {array} \]
2.3.29.4 ✓ Mathematica. Time used: 0.084 (sec). Leaf size: 35
ode=D[y[x],x]== 2*x^2 * Sin[y[x]/x]^2 + y[x]/x;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
\text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {1}{\cos (2 K[1])-1}dK[1]=-\frac {x^2}{2}+c_1,y(x)\right ]
\]
2.3.29.5 ✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-2*x**2*sin(y(x)/x)**2 + Derivative(y(x), x) - y(x)/x,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x**3*sin(y(x)/x)**2 + y(x))/x cannot be
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode(ode,func=y(x))
('factorable', 'lie_group')