2.1.31 Problem 32
Internal
problem
ID
[10017]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
32
Date
solved
:
Thursday, November 27, 2025 at 10:05:04 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
Solved using first_order_ode_dAlembert
Time used: 0.317 (sec)
Solve
\begin{align*}
2 t +3 x+\left (x+2\right ) x^{\prime }&=0 \\
\end{align*}
Let
\(p=x^{\prime }\) the ode becomes
\begin{align*} 2 t +3 x +\left (x +2\right ) p = 0 \end{align*}
Solving for \(x\) from the above results in
\begin{align*}
\tag{1} x &= -\frac {2 t}{3+p}-\frac {2 p}{3+p} \\
\end{align*}
This has the form
\begin{align*} x=t f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=x'(t)\) . The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(t\) gives
\begin{align*} p &= f+(t f'+g') \frac {dp}{dt}\\ p-f &= (t f'+g') \frac {dp}{dt}\tag {2} \end{align*}
Comparing the form \(x=t f + g\) to (1A) shows that
\begin{align*} f &= -\frac {2}{3+p}\\ g &= -\frac {2 p}{3+p} \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p +\frac {2}{3+p} = \left (\frac {2 t}{\left (3+p \right )^{2}}-\frac {2}{3+p}+\frac {2 p}{\left (3+p \right )^{2}}\right ) p^{\prime }\left (t \right )
\end{equation}
The singular solution is found by setting
\(\frac {dp}{dt}=0\) in the above which gives
\begin{align*} p +\frac {2}{3+p} = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=-1\\ p_{2} &=-2 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} x = 1-t\\ x = -2 t +4 \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}t}}\neq 0\) . From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (t \right ) = \frac {p \left (t \right )+\frac {2}{3+p \left (t \right )}}{\frac {2 t}{\left (3+p \left (t \right )\right )^{2}}-\frac {2}{3+p \left (t \right )}+\frac {2 p \left (t \right )}{\left (3+p \left (t \right )\right )^{2}}}
\end{equation}
This ODE is now solved for
\(p \left (t \right )\) .
No inversion is needed.
The ode
\begin{equation}
p^{\prime }\left (t \right ) = \frac {\left (3+p \left (t \right )\right ) \left (p \left (t \right )+2\right ) \left (p \left (t \right )+1\right )}{2 t -6}
\end{equation}
is separable as it can be written as
\begin{align*} p^{\prime }\left (t \right )&= \frac {\left (3+p \left (t \right )\right ) \left (p \left (t \right )+2\right ) \left (p \left (t \right )+1\right )}{2 t -6}\\ &= f(t) g(p) \end{align*}
Where
\begin{align*} f(t) &= \frac {1}{2 t -6}\\ g(p) &= \left (3+p \right ) \left (p +2\right ) \left (p +1\right ) \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(p)} \,dp} &= \int { f(t) \,dt} \\
\int { \frac {1}{\left (3+p \right ) \left (p +2\right ) \left (p +1\right )}\,dp} &= \int { \frac {1}{2 t -6} \,dt} \\
\end{align*}
\[
-\ln \left (p \left (t \right )+2\right )+\frac {\ln \left (p \left (t \right )+1\right )}{2}+\frac {\ln \left (3+p \left (t \right )\right )}{2}=\ln \left (\sqrt {t -3}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values
\(g(p)\) is zero, since we had to divide by this above. Solving
\(g(p)=0\) or
\[
\left (3+p \right ) \left (p +2\right ) \left (p +1\right )=0
\]
for
\(p \left (t \right )\) gives
\begin{align*} p \left (t \right )&=-3\\ p \left (t \right )&=-2 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
-\ln \left (p \left (t \right )+2\right )+\frac {\ln \left (p \left (t \right )+1\right )}{2}+\frac {\ln \left (3+p \left (t \right )\right )}{2} &= \ln \left (\sqrt {t -3}\right )+c_1 \\
p \left (t \right ) &= -3 \\
p \left (t \right ) &= -2 \\
\end{align*}
Substituing the above solution for
\(p\) in (2A) gives
\begin{align*}
x &= -\frac {2 t}{2-\frac {\sqrt {-t \,{\mathrm e}^{2 c_1}+3 \,{\mathrm e}^{2 c_1}+1}+1}{\sqrt {-t \,{\mathrm e}^{2 c_1}+3 \,{\mathrm e}^{2 c_1}+1}}}-\frac {2 \left (-\frac {\sqrt {-t \,{\mathrm e}^{2 c_1}+3 \,{\mathrm e}^{2 c_1}+1}+1}{\sqrt {-t \,{\mathrm e}^{2 c_1}+3 \,{\mathrm e}^{2 c_1}+1}}-1\right )}{2-\frac {\sqrt {-t \,{\mathrm e}^{2 c_1}+3 \,{\mathrm e}^{2 c_1}+1}+1}{\sqrt {-t \,{\mathrm e}^{2 c_1}+3 \,{\mathrm e}^{2 c_1}+1}}} \\
x &= -2 t +4 \\
\end{align*}
Simplifying
the above gives
\begin{align*}
x &= 1-t \\
x &= -2 t +4 \\
x &= \frac {2+\left (-2 t +4\right ) \sqrt {1+\left (-t +3\right ) {\mathrm e}^{2 c_1}}}{\sqrt {1+\left (-t +3\right ) {\mathrm e}^{2 c_1}}-1} \\
x &= -2 t +4 \\
\end{align*}
Figure 2.82: Slope field \(2 t +3 x+\left (x+2\right ) x^{\prime } = 0\)
Summary of solutions found
\begin{align*}
x &= \frac {2+\left (-2 t +4\right ) \sqrt {1+\left (-t +3\right ) {\mathrm e}^{2 c_1}}}{\sqrt {1+\left (-t +3\right ) {\mathrm e}^{2 c_1}}-1} \\
x &= 1-t \\
x &= -2 t +4 \\
\end{align*}
Solved using first_order_ode_homog_type_maple_C
Time used: 0.424 (sec)
Solve
\begin{align*}
2 t +3 x+\left (x+2\right ) x^{\prime }&=0 \\
\end{align*}
Let
\(Y = x -y_{0}\) and
\(X = t -x_{0}\) then the above is transformed to new ode in
\(Y(X)\) \[
\frac {d}{d X}Y \left (X \right ) = -\frac {2 X +2 x_{0} +3 Y \left (X \right )+3 y_{0}}{Y \left (X \right )+y_{0} +2}
\]
Solving for possible values of
\(x_{0}\) and
\(y_{0}\)
which makes the above ode a homogeneous ode results in
\begin{align*} x_{0}&=3\\ y_{0}&=-2 \end{align*}
Using these values now it is possible to easily solve for \(Y \left (X \right )\) . The above ode now becomes
\begin{align*} \frac {d}{d X}Y \left (X \right ) = -\frac {2 X +3 Y \left (X \right )}{Y \left (X \right )} \end{align*}
In canonical form, the ODE is
\begin{align*} Y' &= F(X,Y)\\ &= -\frac {2 X +3 Y}{Y}\tag {1} \end{align*}
An ode of the form \(Y' = \frac {M(X,Y)}{N(X,Y)}\) is called homogeneous if the functions \(M(X,Y)\) and \(N(X,Y)\) are both homogeneous functions
and of the same order. Recall that a function \(f(X,Y)\) is homogeneous of order \(n\) if
\[ f(t^n X, t^n Y)= t^n f(X,Y) \]
In this case, it can be
seen that both
\(M=-2 X -3 Y\) and
\(N=Y\) are both homogeneous and of the same order
\(n=1\) . Therefore this is a
homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the
substitution
\(u=\frac {Y}{X}\) , or
\(Y=uX\) . Hence
\[ \frac { \mathop {\mathrm {d}Y}}{\mathop {\mathrm {d}X}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}X}}X + u \]
Applying the transformation
\(Y=uX\) to the above ODE in (1) gives
\begin{align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}X}}X + u &= -\frac {2}{u}-3\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}X}} &= \frac {-\frac {2}{u \left (X \right )}-3-u \left (X \right )}{X} \end{align*}
Or
\[ \frac {d}{d X}u \left (X \right )-\frac {-\frac {2}{u \left (X \right )}-3-u \left (X \right )}{X} = 0 \]
Or
\[ \left (\frac {d}{d X}u \left (X \right )\right ) u \left (X \right ) X +u \left (X \right )^{2}+3 u \left (X \right )+2 = 0 \]
Which is now solved as separable in
\(u \left (X \right )\) .
The ode
\begin{equation}
\frac {d}{d X}u \left (X \right ) = -\frac {\left (u \left (X \right )+2\right ) \left (u \left (X \right )+1\right )}{u \left (X \right ) X}
\end{equation}
is separable as it can be written as
\begin{align*} \frac {d}{d X}u \left (X \right )&= -\frac {\left (u \left (X \right )+2\right ) \left (u \left (X \right )+1\right )}{u \left (X \right ) X}\\ &= f(X) g(u) \end{align*}
Where
\begin{align*} f(X) &= -\frac {1}{X}\\ g(u) &= \frac {\left (u +2\right ) \left (u +1\right )}{u} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(X) \,dX} \\
\int { \frac {u}{\left (u +2\right ) \left (u +1\right )}\,du} &= \int { -\frac {1}{X} \,dX} \\
\end{align*}
\[
2 \ln \left (u \left (X \right )+2\right )-\ln \left (u \left (X \right )+1\right )=\ln \left (\frac {1}{X}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values
\(g(u)\) is zero, since we had to divide by this above. Solving
\(g(u)=0\) or
\[
\frac {\left (u +2\right ) \left (u +1\right )}{u}=0
\]
for
\(u \left (X \right )\) gives
\begin{align*} u \left (X \right )&=-2\\ u \left (X \right )&=-1 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
2 \ln \left (u \left (X \right )+2\right )-\ln \left (u \left (X \right )+1\right ) &= \ln \left (\frac {1}{X}\right )+c_1 \\
u \left (X \right ) &= -2 \\
u \left (X \right ) &= -1 \\
\end{align*}
Converting
\(2 \ln \left (u \left (X \right )+2\right )-\ln \left (u \left (X \right )+1\right ) = \ln \left (\frac {1}{X}\right )+c_1\) back to
\(Y \left (X \right )\) gives
\begin{align*} 2 \ln \left (\frac {Y \left (X \right )+2 X}{X}\right )-\ln \left (\frac {Y \left (X \right )+X}{X}\right ) = \ln \left (\frac {1}{X}\right )+c_1 \end{align*}
Converting \(u \left (X \right ) = -2\) back to \(Y \left (X \right )\) gives
\begin{align*} Y \left (X \right ) = -2 X \end{align*}
Converting \(u \left (X \right ) = -1\) back to \(Y \left (X \right )\) gives
\begin{align*} Y \left (X \right ) = -X \end{align*}
Using the solution for \(Y(X)\)
\begin{align*} 2 \ln \left (\frac {Y \left (X \right )+2 X}{X}\right )-\ln \left (\frac {Y \left (X \right )+X}{X}\right ) = \ln \left (\frac {1}{X}\right )+c_1\tag {A} \end{align*}
And replacing back terms in the above solution using
\begin{align*} Y &= x +y_{0}\\ X &= x_{0} +t \end{align*}
Or
\begin{align*} Y &= x -2\\ X &= t +3 \end{align*}
Then the solution in \(x\) becomes using EQ (A)
\begin{align*} 2 \ln \left (\frac {x+2 t -4}{t -3}\right )-\ln \left (\frac {t +x-1}{t -3}\right ) = \ln \left (\frac {1}{t -3}\right )+c_1 \end{align*}
Using the solution for \(Y(X)\)
\begin{align*} Y \left (X \right ) = -2 X\tag {A} \end{align*}
And replacing back terms in the above solution using
\begin{align*} Y &= x +y_{0}\\ X &= x_{0} +t \end{align*}
Or
\begin{align*} Y &= x -2\\ X &= t +3 \end{align*}
Then the solution in \(x\) becomes using EQ (A)
\begin{align*} x+2 = -2 t +6 \end{align*}
Using the solution for \(Y(X)\)
\begin{align*} Y \left (X \right ) = -X\tag {A} \end{align*}
And replacing back terms in the above solution using
\begin{align*} Y &= x +y_{0}\\ X &= x_{0} +t \end{align*}
Or
\begin{align*} Y &= x -2\\ X &= t +3 \end{align*}
Then the solution in \(x\) becomes using EQ (A)
\begin{align*} x+2 = -t +3 \end{align*}
Solving for \(x\) gives
\begin{align*}
x &= 1-t \\
x &= -2 t +4 \\
x &= -2 t +\frac {{\mathrm e}^{c_1}}{2}+4-\frac {\sqrt {{\mathrm e}^{2 c_1}-4 \,{\mathrm e}^{c_1} t +12 \,{\mathrm e}^{c_1}}}{2} \\
x &= -2 t +\frac {{\mathrm e}^{c_1}}{2}+4+\frac {\sqrt {{\mathrm e}^{2 c_1}-4 \,{\mathrm e}^{c_1} t +12 \,{\mathrm e}^{c_1}}}{2} \\
\end{align*}
Figure 2.83: Slope field \(2 t +3 x+\left (x+2\right ) x^{\prime } = 0\)
Summary of solutions found
\begin{align*}
x &= 1-t \\
x &= -2 t +4 \\
x &= -2 t +\frac {{\mathrm e}^{c_1}}{2}+4-\frac {\sqrt {{\mathrm e}^{2 c_1}-4 \,{\mathrm e}^{c_1} t +12 \,{\mathrm e}^{c_1}}}{2} \\
x &= -2 t +\frac {{\mathrm e}^{c_1}}{2}+4+\frac {\sqrt {{\mathrm e}^{2 c_1}-4 \,{\mathrm e}^{c_1} t +12 \,{\mathrm e}^{c_1}}}{2} \\
\end{align*}
Solve
\begin{align*}
2 t +3 x+\left (x+2\right ) x^{\prime }&=0 \\
\end{align*}
Solved using first_order_ode_abel_second_kind_solved_by_converting_to_first_kind
Time used: 1.070 (sec)
This is Abel second kind ODE, it has the form
\[ \left (x+g\right )x^{\prime }= f_0(t)+f_1(t) x +f_2(t)x^{2}+f_3(t)x^{3} \]
Comparing the above to given ODE which is
\begin{align*}2 t +3 x+\left (x+2\right ) x^{\prime } = 0\tag {1} \end{align*}
Shows that
\begin{align*} g &= 2\\ f_0 &= -2 t\\ f_1 &= -3\\ f_2 &= 0\\ f_3 &= 0 \end{align*}
Applying transformation
\begin{align*} x&=\frac {1}{u(t)}-g \end{align*}
Results in the new ode which is Abel first kind
\begin{align*} u^{\prime }\left (t \right ) = \left (2 t -6\right ) u \left (t \right )^{3}+3 u \left (t \right )^{2} \end{align*}
Which is now solved.
Solve This is Abel first kind ODE, it has the form
\[ u^{\prime }\left (t \right )= f_0(t)+f_1(t) u \left (t \right ) +f_2(t)u \left (t \right )^{2}+f_3(t)u \left (t \right )^{3} \]
Comparing the above to given ODE which is
\begin{align*}u^{\prime }\left (t \right )&=\left (2 t -6\right ) u \left (t \right )^{3}+3 u \left (t \right )^{2}\tag {1} \end{align*}
Therefore
\begin{align*} f_0 &= 0\\ f_1 &= 0\\ f_2 &= 3\\ f_3 &= 2 t -6 \end{align*}
Hence
\begin{align*} f'_{0} &= 0\\ f'_{3} &= 2 \end{align*}
Since \(f_2(t)=3\) is not zero, then the followingtransformation is used to remove \(f_2\) . Let \(u \left (t \right ) = u(t) - \frac {f_2}{3 f_3}\) or
\begin{align*} u \left (t \right ) &= u(t) - \left ( \frac {3}{6 t -18} \right ) \\ &= u \left (t \right )-\frac {1}{2 t -6} \end{align*}
The above transformation applied to (1) gives a new ODE as
\begin{align*} u^{\prime }\left (t \right ) = \frac {\left (4 t^{2}-24 t +36\right ) u \left (t \right )^{3}}{2 t -6}-\frac {3 u \left (t \right )}{2 \left (t -3\right )}\tag {2} \end{align*}
The above ODE (2) can now be solved.
Solve
In canonical form, the ODE is
\begin{align*} u' &= F(t,u)\\ &= \frac {u \left (4 u^{2} t^{2}-24 u^{2} t +36 u^{2}-3\right )}{2 t -6} \end{align*}
This is a Bernoulli ODE.
\[ u' = \left (-\frac {3}{2 \left (t -3\right )}\right ) u \left (t \right ) + \left (\frac {4 t^{2}-24 t +36}{2 t -6}\right )u^{3} \tag {1} \]
The standard Bernoulli ODE has the form
\[ u' = f_0(t)u+f_1(t)u^n \tag {2} \]
Comparing this to (1) shows
that
\begin{align*} f_0 &=-\frac {3}{2 \left (t -3\right )}\\ f_1 &=\frac {4 t^{2}-24 t +36}{2 t -6} \end{align*}
The first step is to divide the above equation by \(u^n \) which gives
\[ \frac {u'}{u^n} = f_0(t) u^{1-n} +f_1(t) \tag {3} \]
The next step is use the substitution
\(v = u^{1-n}\) in equation (3) which generates a new ODE in
\(v \left (t \right )\) which will be linear and can be easily solved
using an integrating factor. Backsubstitution then gives the solution
\(u(t)\) which is what we
want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that
\begin{align*} f_0(t)&=-\frac {3}{2 \left (t -3\right )}\\ f_1(t)&=\frac {4 t^{2}-24 t +36}{2 t -6}\\ n &=3 \end{align*}
Dividing both sides of ODE (1) by \(u^n=u^{3}\) gives
\begin{align*} u'\frac {1}{u^{3}} &= -\frac {3}{2 \left (t -3\right ) u^{2}} +\frac {4 t^{2}-24 t +36}{2 t -6} \tag {4} \end{align*}
Let
\begin{align*} v &= u^{1-n} \\ &= \frac {1}{u^{2}} \tag {5} \end{align*}
Taking derivative of equation (5) w.r.t \(t\) gives
\begin{align*} v' &= -\frac {2}{u^{3}}u' \tag {6} \end{align*}
Substituting equations (5) and (6) into equation (4) gives
\begin{align*} -\frac {v^{\prime }\left (t \right )}{2}&= -\frac {3 v \left (t \right )}{2 \left (t -3\right )}+\frac {4 t^{2}-24 t +36}{2 t -6}\\ v' &= \frac {3 v}{t -3}-\frac {4 t^{2}-24 t +36}{t -3} \tag {7} \end{align*}
The above now is a linear ODE in \(v \left (t \right )\) which is now solved.
In canonical form a linear first order is
\begin{align*} v^{\prime }\left (t \right ) + q(t)v \left (t \right ) &= p(t) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(t) &=-\frac {3}{t -3}\\ p(t) &=-4 t +12 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dt}}\\ &= {\mathrm e}^{\int -\frac {3}{t -3}d t}\\ &= \frac {1}{\left (t -3\right )^{3}} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}t}}\left ( \mu v\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}t}}\left ( \mu v\right ) &= \left (\mu \right ) \left (-4 t +12\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}t}} \left (\frac {v}{\left (t -3\right )^{3}}\right ) &= \left (\frac {1}{\left (t -3\right )^{3}}\right ) \left (-4 t +12\right ) \\
\mathrm {d} \left (\frac {v}{\left (t -3\right )^{3}}\right ) &= \left (\frac {-4 t +12}{\left (t -3\right )^{3}}\right )\, \mathrm {d} t \\
\end{align*}
Integrating gives
\begin{align*} \frac {v}{\left (t -3\right )^{3}}&= \int {\frac {-4 t +12}{\left (t -3\right )^{3}} \,dt} \\ &=\frac {4}{t -3} + c_1 \end{align*}
Dividing throughout by the integrating factor \(\frac {1}{\left (t -3\right )^{3}}\) gives the final solution
\[ v \left (t \right ) = \left (t -3\right )^{2} \left (4+c_1 \left (t -3\right )\right ) \]
The substitution
\(v = u^{1-n}\) is now
used to convert the above solution back to
\(u \left (t \right )\) which results in
\[
\frac {1}{u \left (t \right )^{2}} = \left (t -3\right )^{2} \left (4+c_1 \left (t -3\right )\right )
\]
Solving for
\(u \left (t \right )\) gives
\begin{align*}
u \left (t \right ) &= \frac {1}{\sqrt {c_1 t -3 c_1 +4}\, \left (t -3\right )} \\
u \left (t \right ) &= -\frac {1}{\sqrt {c_1 t -3 c_1 +4}\, \left (t -3\right )} \\
\end{align*}
Now we transform
the solution
\(u \left (t \right ) = \frac {1}{\sqrt {c_1 t -3 c_1 +4}\, \left (t -3\right )}\) to
\(u \left (t \right )\) using
\(u \left (t \right ) = u(t) - \frac {f_2}{3 f_3}\) , which gives
\begin{align*} u \left (t \right ) &= \frac {1}{\sqrt {c_1 t -3 c_1 +4}\, \left (t -3\right )} - \left (\frac {1}{2 t -6}\right ) \\ &= \frac {1}{\sqrt {c_1 t -3 c_1 +4}\, \left (t -3\right )}-\frac {1}{2 t -6}\\ &= \frac {-\frac {1}{2}+\frac {1}{\sqrt {c_1 t -3 c_1 +4}}}{t -3} \end{align*}
Now we transform the solution \(u \left (t \right ) = -\frac {1}{\sqrt {c_1 t -3 c_1 +4}\, \left (t -3\right )}\) to \(u \left (t \right )\) using \(u \left (t \right ) = u(t) - \frac {f_2}{3 f_3}\) , which gives
\begin{align*} u \left (t \right ) &= -\frac {1}{\sqrt {c_1 t -3 c_1 +4}\, \left (t -3\right )} - \left (\frac {1}{2 t -6}\right ) \\ &= -\frac {1}{\sqrt {c_1 t -3 c_1 +4}\, \left (t -3\right )}-\frac {1}{2 t -6}\\ &= \frac {-\frac {1}{2}-\frac {1}{\sqrt {c_1 t -3 c_1 +4}}}{t -3} \end{align*}
Now we transform the solution \(u \left (t \right ) = \frac {-\frac {1}{2}-\frac {1}{\sqrt {c_1 t -3 c_1 +4}}}{t -3}\) to \(x\) using \(u \left (t \right )=\frac {1}{x+2}\) which gives
\[
x = \frac {-4+\left (-2 t +4\right ) \sqrt {4+c_1 \left (t -3\right )}}{2+\sqrt {4+c_1 \left (t -3\right )}}
\]
Now we transform the solution
\(u \left (t \right ) = \frac {-\frac {1}{2}+\frac {1}{\sqrt {c_1 t -3 c_1 +4}}}{t -3}\) to
\(x\) using
\(u \left (t \right )=\frac {1}{x+2}\)
which gives
\[
x = \frac {4+\left (-2 t +4\right ) \sqrt {4+c_1 \left (t -3\right )}}{-2+\sqrt {4+c_1 \left (t -3\right )}}
\]
Figure 2.84: Slope field \(2 t +3 x+\left (x+2\right ) x^{\prime } = 0\)
Figure 2.85: Slope field \(2 t +3 x+\left (x+2\right ) x^{\prime } = 0\)
Summary of solutions found
\begin{align*}
x &= \frac {-4+\left (-2 t +4\right ) \sqrt {4+c_1 \left (t -3\right )}}{2+\sqrt {4+c_1 \left (t -3\right )}} \\
x &= \frac {4+\left (-2 t +4\right ) \sqrt {4+c_1 \left (t -3\right )}}{-2+\sqrt {4+c_1 \left (t -3\right )}} \\
\end{align*}
Solved using first_order_ode_LIE
Time used: 0.965 (sec)
Solve
\begin{align*}
2 t +3 x+\left (x+2\right ) x^{\prime }&=0 \\
\end{align*}
Writing the ode as
\begin{align*} x^{\prime }&=-\frac {2 t +3 x}{x +2}\\ x^{\prime }&= \omega \left ( t,x\right ) \end{align*}
The condition of Lie symmetry is the linearized PDE given by
\begin{align*} \eta _{t}+\omega \left ( \eta _{x}-\xi _{t}\right ) -\omega ^{2}\xi _{x}-\omega _{t}\xi -\omega _{x}\eta =0\tag {A} \end{align*}
To determine \(\xi ,\eta \) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as
anstaz gives
\begin{align*}
\tag{1E} \xi &= t a_{2}+x a_{3}+a_{1} \\
\tag{2E} \eta &= t b_{2}+x b_{3}+b_{1} \\
\end{align*}
Where the unknown coefficients are
\[
\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\}
\]
Substituting equations (1E,2E) and
\(\omega \) into (A)
gives
\begin{equation}
\tag{5E} b_{2}-\frac {\left (2 t +3 x \right ) \left (b_{3}-a_{2}\right )}{x +2}-\frac {\left (2 t +3 x \right )^{2} a_{3}}{\left (x +2\right )^{2}}+\frac {2 t a_{2}+2 x a_{3}+2 a_{1}}{x +2}-\left (-\frac {3}{x +2}+\frac {2 t +3 x}{\left (x +2\right )^{2}}\right ) \left (t b_{2}+x b_{3}+b_{1}\right ) = 0
\end{equation}
Putting the above in normal form gives
\[
-\frac {4 t^{2} a_{3}+2 t^{2} b_{2}-4 t x a_{2}+12 t x a_{3}+4 t x b_{3}-3 x^{2} a_{2}+7 x^{2} a_{3}-x^{2} b_{2}+3 x^{2} b_{3}-8 t a_{2}+2 t b_{1}-6 t b_{2}+4 t b_{3}-2 x a_{1}-6 x a_{2}-4 x a_{3}-4 x b_{2}-4 a_{1}-6 b_{1}-4 b_{2}}{\left (x +2\right )^{2}} = 0
\]
Setting the numerator to zero gives
\begin{equation}
\tag{6E} -4 t^{2} a_{3}-2 t^{2} b_{2}+4 t x a_{2}-12 t x a_{3}-4 t x b_{3}+3 x^{2} a_{2}-7 x^{2} a_{3}+x^{2} b_{2}-3 x^{2} b_{3}+8 t a_{2}-2 t b_{1}+6 t b_{2}-4 t b_{3}+2 x a_{1}+6 x a_{2}+4 x a_{3}+4 x b_{2}+4 a_{1}+6 b_{1}+4 b_{2} = 0
\end{equation}
Looking at the
above PDE shows the following are all the terms with
\(\{t, x\}\) in them.
\[
\{t, x\}
\]
The following substitution is
now made to be able to collect on all terms with
\(\{t, x\}\) in them
\[
\{t = v_{1}, x = v_{2}\}
\]
The above PDE (6E) now
becomes
\begin{equation}
\tag{7E} 4 a_{2} v_{1} v_{2}+3 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}-12 a_{3} v_{1} v_{2}-7 a_{3} v_{2}^{2}-2 b_{2} v_{1}^{2}+b_{2} v_{2}^{2}-4 b_{3} v_{1} v_{2}-3 b_{3} v_{2}^{2}+2 a_{1} v_{2}+8 a_{2} v_{1}+6 a_{2} v_{2}+4 a_{3} v_{2}-2 b_{1} v_{1}+6 b_{2} v_{1}+4 b_{2} v_{2}-4 b_{3} v_{1}+4 a_{1}+6 b_{1}+4 b_{2} = 0
\end{equation}
Collecting the above on the terms
\(v_i\) introduced, and these are
\[
\{v_{1}, v_{2}\}
\]
Equation (7E) now
becomes
\begin{equation}
\tag{8E} \left (-4 a_{3}-2 b_{2}\right ) v_{1}^{2}+\left (4 a_{2}-12 a_{3}-4 b_{3}\right ) v_{1} v_{2}+\left (8 a_{2}-2 b_{1}+6 b_{2}-4 b_{3}\right ) v_{1}+\left (3 a_{2}-7 a_{3}+b_{2}-3 b_{3}\right ) v_{2}^{2}+\left (2 a_{1}+6 a_{2}+4 a_{3}+4 b_{2}\right ) v_{2}+4 a_{1}+6 b_{1}+4 b_{2} = 0
\end{equation}
Setting each coefficients in (8E) to zero gives the following equations to solve
\begin{align*} -4 a_{3}-2 b_{2}&=0\\ 4 a_{1}+6 b_{1}+4 b_{2}&=0\\ 4 a_{2}-12 a_{3}-4 b_{3}&=0\\ 2 a_{1}+6 a_{2}+4 a_{3}+4 b_{2}&=0\\ 3 a_{2}-7 a_{3}+b_{2}-3 b_{3}&=0\\ 8 a_{2}-2 b_{1}+6 b_{2}-4 b_{3}&=0 \end{align*}
Solving the above equations for the unknowns gives
\begin{align*} a_{1}&=-7 a_{3}-3 b_{3}\\ a_{2}&=3 a_{3}+b_{3}\\ a_{3}&=a_{3}\\ b_{1}&=6 a_{3}+2 b_{3}\\ b_{2}&=-2 a_{3}\\ b_{3}&=b_{3} \end{align*}
Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown
in the RHS) gives
\begin{align*}
\xi &= t -3 \\
\eta &= x +2 \\
\end{align*}
Shifting is now applied to make
\(\xi =0\) in order to simplify the rest of the computation
\begin{align*} \eta &= \eta - \omega \left (t,x\right ) \xi \\ &= x +2 - \left (-\frac {2 t +3 x}{x +2}\right ) \left (t -3\right ) \\ &= \frac {2 \left (\frac {x}{2}+t -2\right ) \left (t +x -1\right )}{x +2}\\ \xi &= 0 \end{align*}
The next step is to determine the canonical coordinates \(R,S\) . The canonical coordinates map \(\left ( t,x\right ) \to \left ( R,S \right )\) where \(\left ( R,S \right )\)
are the canonical coordinates which make the original ode become a quadrature and hence solved
by integration.
The characteristic pde which is used to find the canonical coordinates is
\begin{align*} \frac {d t}{\xi } &= \frac {d x}{\eta } = dS \tag {1} \end{align*}
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial t} + \eta \frac {\partial }{\partial x}\right ) S(t,x) = 1\) . Starting with the first pair of ode’s in (1) gives an
ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\) . Since \(\xi =0\) then in this
special case
\begin{align*} R = t \end{align*}
\(S\) is found from
\begin{align*} S &= \int { \frac {1}{\eta }} dy\\ &= \int { \frac {1}{\frac {2 \left (\frac {x}{2}+t -2\right ) \left (t +x -1\right )}{x +2}}} dy \end{align*}
Which results in
\begin{align*} S&= 2 \ln \left (x +2 t -4\right )-\ln \left (t +x -1\right ) \end{align*}
Now that \(R,S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\begin{align*} \frac {dS}{dR} &= \frac { S_{t} + \omega (t,x) S_{x} }{ R_{t} + \omega (t,x) R_{x} }\tag {2} \end{align*}
Where in the above \(R_{t},R_{x},S_{t},S_{x}\) are all partial derivatives and \(\omega (t,x)\) is the right hand side of the original ode given
by
\begin{align*} \omega (t,x) &= -\frac {2 t +3 x}{x +2} \end{align*}
Evaluating all the partial derivatives gives
\begin{align*} R_{t} &= 1\\ R_{x} &= 0\\ S_{t} &= \frac {4}{x +2 t -4}-\frac {1}{t +x -1}\\ S_{x} &= \frac {x +2}{\left (t +x -1\right ) \left (x +2 t -4\right )} \end{align*}
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\begin{align*} \frac {dS}{dR} &= 0\tag {2A} \end{align*}
We now need to express the RHS as function of \(R\) only. This is done by solving for \(t,x\) in terms of \(R,S\) from
the result obtained earlier and simplifying. This gives
\begin{align*} \frac {dS}{dR} &= 0 \end{align*}
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an
ode, no matter how complicated it is, to one that can be solved by integration when the ode is in
the canonical coordiates \(R,S\) .
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\) , then we only need to integrate \(f(R)\) .
\begin{align*} \int {dS} &= \int {0\, dR} + c_2 \\ S \left (R \right ) &= c_2 \end{align*}
To complete the solution, we just need to transform the above back to \(t,x\) coordinates. This results in
\begin{align*} 2 \ln \left (x+2 t -4\right )-\ln \left (t +x-1\right ) = c_2 \end{align*}
The following diagram shows solution curves of the original ode and how they transform in the
canonical coordinates space using the mapping shown.
Original ode in \(t,x\) coordinates
Canonical
coordinates
transformation
ODE in canonical coordinates \((R,S)\)
\( \frac {dx}{dt} = -\frac {2 t +3 x}{x +2}\)
\( \frac {d S}{d R} = 0\)
\(\!\begin {aligned} R&= t\\ S&= 2 \ln \left (x +2 t -4\right )-\ln \left (t +x -1\right ) \end {aligned} \)
Solving for \(x\) gives
\begin{align*}
x &= \frac {{\mathrm e}^{c_2}}{2}-\frac {\sqrt {{\mathrm e}^{2 c_2}-4 t \,{\mathrm e}^{c_2}+12 \,{\mathrm e}^{c_2}}}{2}-2 t +4 \\
x &= \frac {{\mathrm e}^{c_2}}{2}+\frac {\sqrt {{\mathrm e}^{2 c_2}-4 t \,{\mathrm e}^{c_2}+12 \,{\mathrm e}^{c_2}}}{2}-2 t +4 \\
\end{align*}
Figure 2.86: Slope field \(2 t +3 x+\left (x+2\right ) x^{\prime } = 0\)
Summary of solutions found
\begin{align*}
x &= \frac {{\mathrm e}^{c_2}}{2}-\frac {\sqrt {{\mathrm e}^{2 c_2}-4 t \,{\mathrm e}^{c_2}+12 \,{\mathrm e}^{c_2}}}{2}-2 t +4 \\
x &= \frac {{\mathrm e}^{c_2}}{2}+\frac {\sqrt {{\mathrm e}^{2 c_2}-4 t \,{\mathrm e}^{c_2}+12 \,{\mathrm e}^{c_2}}}{2}-2 t +4 \\
\end{align*}
✓ Maple. Time used: 1.936 (sec). Leaf size: 30
ode :=2* t +3* x ( t )+( x ( t )+2)* diff ( x ( t ), t ) = 0;
dsolve ( ode , x ( t ), singsol=all);
\[
x = \frac {-\sqrt {4 \left (t -3\right ) c_1 +1}-1+\left (-4 t +8\right ) c_1}{2 c_1}
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 2 t +3 x \left (t \right )+\left (x \left (t \right )+2\right ) \left (\frac {d}{d t}x \left (t \right )\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d t}x \left (t \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d t}x \left (t \right )=\frac {-2 t -3 x \left (t \right )}{x \left (t \right )+2} \end {array} \]
✓ Mathematica. Time used: 60.068 (sec). Leaf size: 1165
ode =2* t +3* x [ t ]+( x [ t ]+2)* D [ x [ t ], t ]==0;
ic ={};
DSolve [{ ode , ic }, x [ t ], t , IncludeSingularSolutions -> True ]
\begin{align*} \text {Solution too large to show}\end{align*}
✓ Sympy. Time used: 1.465 (sec). Leaf size: 44
from sympy import *
t = symbols("t")
x = Function("x")
ode = Eq(2*t + (x(t) + 2)*Derivative(x(t), t) + 3*x(t),0)
ics = {}
dsolve ( ode , func = x ( t ), ics = ics )
\[
\left [ x{\left (t \right )} = 2 C_{1} - 2 t - 2 \sqrt {C_{1} \left (C_{1} - t + 3\right )} + 4, \ x{\left (t \right )} = 2 C_{1} - 2 t + 2 \sqrt {C_{1} \left (C_{1} - t + 3\right )} + 4\right ]
\]