2.4.61 Problem 58
Internal
problem
ID
[10224]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
58
Date
solved
:
Thursday, November 27, 2025 at 10:26:57 AM
CAS
classification
:
[[_Emden, _Fowler]]
\begin{align*}
x^{2} y^{\prime \prime }-x y&=0 \\
\end{align*}
Series expansion around
\(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the
ODE.
\[ x^{2} y^{\prime \prime }-x y = 0 \]
The following is summary of singularities for the above ode. Writing the ode as
\begin{align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end{align*}
Where
\begin{align*} p(x) &= 0\\ q(x) &= -\frac {1}{x}\\ \end{align*}
Table 2.113: Table \(p(x),q(x)\) singularites.
| |
| \(p(x)=0\) |
| |
|
singularity | type |
| |
| |
| \(q(x)=-\frac {1}{x}\) |
| |
|
singularity | type |
| |
| \(x = 0\) | \(\text {``regular''}\) |
| |
Combining everything together gives the following summary of singularities for the ode
as
Regular singular points : \([0]\)
Irregular singular points : \([\infty ]\)
Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[ x^{2} y^{\prime \prime }-x y = 0 \]
Let the solution be represented as Frobenius power series of the form
\[
y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}
\]
Then
\begin{align*}
y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\
y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\
\end{align*}
Substituting the
above back into the ode gives
\begin{equation}
\tag{1} x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )-x \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
Which simplifies to
\begin{equation}
\tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n +r} a_{n}\right ) = 0
\end{equation}
The next step is to make all powers of
\(x\) be
\(n +r\) in
each summation term. Going over each summation term above with power of
\(x\) in it which is not
already
\(x^{n +r}\) and adjusting the power and the corresponding index gives
\begin{align*}
\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n +r} a_{n}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} x^{n +r}\right ) \\
\end{align*}
Substituting all the above in
Eq (2A) gives the following equation where now all powers of
\(x\) are the same and equal to
\(n +r\).
\begin{equation}
\tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} x^{n +r}\right ) = 0
\end{equation}
The indicial equation is obtained from
\(n = 0\). From Eq (2B) this gives
\[ x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right ) = 0 \]
When
\(n = 0\) the above
becomes
\[ x^{r} a_{0} r \left (-1+r \right ) = 0 \]
Or
\[ x^{r} a_{0} r \left (-1+r \right ) = 0 \]
Since
\(a_{0}\neq 0\) then the above simplifies to
\[ x^{r} r \left (-1+r \right ) = 0 \]
Since the above is true for all
\(x\) then
the indicial equation becomes
\[ r \left (-1+r \right ) = 0 \]
Solving for
\(r\) gives the roots of the indicial equation as
\begin{align*} r_1 &= 1\\ r_2 &= 0 \end{align*}
Since \(a_{0}\neq 0\) then the indicial equation becomes
\[ x^{r} r \left (-1+r \right ) = 0 \]
Solving for
\(r\) gives the roots of the indicial equation as
\([1, 0]\).
Since \(r_1 - r_2 = 1\) is an integer, then we can construct two linearly independent solutions
\begin{align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end{align*}
Or
\begin{align*} y_{1}\left (x \right ) &= x \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end{align*}
Or
\begin{align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{1+n}\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end{align*}
Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\)
coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is
arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is
\begin{equation}
\tag{3} a_{n} \left (n +r \right ) \left (n +r -1\right )-a_{n -1} = 0
\end{equation}
Solving for
\(a_{n}\) from recursive equation (4)
gives
\[ a_{n} = \frac {a_{n -1}}{\left (n +r \right ) \left (n +r -1\right )}\tag {4} \]
Which for the root
\(r = 1\) becomes
\[ a_{n} = \frac {a_{n -1}}{\left (1+n \right ) n}\tag {5} \]
At this point, it is a good idea to keep track of
\(a_{n}\) in a table both
before substituting
\(r = 1\) and after as more terms are found using the above recursive equation.
| | |
| \(n\) | \(a_{n ,r}\) | \(a_{n}\) |
| | |
| \(a_{0}\) | \(1\) | \(1\) |
| | |
For \(n = 1\), using the above recursive equation gives
\[ a_{1}=\frac {1}{\left (1+r \right ) r} \]
Which for the root
\(r = 1\) becomes
\[ a_{1}={\frac {1}{2}} \]
And the table now
becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) | \(1\) |
| | |
| \(a_{1}\) | \(\frac {1}{\left (1+r \right ) r}\) | \(\frac {1}{2}\) |
| | |
For \(n = 2\), using the above recursive equation gives
\[ a_{2}=\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )} \]
Which for the root
\(r = 1\) becomes
\[ a_{2}={\frac {1}{12}} \]
And the table now
becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) | \(1\) |
| | |
| \(a_{1}\) | \(\frac {1}{\left (1+r \right ) r}\) | \(\frac {1}{2}\) |
| | |
| \(a_{2}\) | \(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )}\) | \(\frac {1}{12}\) |
| | |
For \(n = 3\), using the above recursive equation gives
\[ a_{3}=\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )^{2} \left (3+r \right )} \]
Which for the root
\(r = 1\) becomes
\[ a_{3}={\frac {1}{144}} \]
And the table now
becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) |
\(1\) |
| | |
| \(a_{1}\) |
\(\frac {1}{\left (1+r \right ) r}\) | \(\frac {1}{2}\) |
| | |
| \(a_{2}\) | \(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )}\) | \(\frac {1}{12}\) |
| | |
| \(a_{3}\) |
\(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )^{2} \left (3+r \right )}\) |
\(\frac {1}{144}\) |
| | |
For \(n = 4\), using the above recursive equation gives
\[ a_{4}=\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )^{2} \left (3+r \right )^{2} \left (4+r \right )} \]
Which for the root
\(r = 1\) becomes
\[ a_{4}={\frac {1}{2880}} \]
And the table now
becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) |
\(1\) |
| | |
| \(a_{1}\) |
\(\frac {1}{\left (1+r \right ) r}\) | \(\frac {1}{2}\) |
| | |
| \(a_{2}\) | \(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )}\) | \(\frac {1}{12}\) |
| | |
| \(a_{3}\) | \(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )^{2} \left (3+r \right )}\) | \(\frac {1}{144}\) |
| | |
| \(a_{4}\) |
\(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )^{2} \left (3+r \right )^{2} \left (4+r \right )}\) |
\(\frac {1}{2880}\) |
| | |
For \(n = 5\), using the above recursive equation gives
\[ a_{5}=\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )^{2} \left (3+r \right )^{2} \left (4+r \right )^{2} \left (5+r \right )} \]
Which for the root
\(r = 1\) becomes
\[ a_{5}={\frac {1}{86400}} \]
And the table now
becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) |
\(1\) |
| | |
| \(a_{1}\) |
\(\frac {1}{\left (1+r \right ) r}\) |
\(\frac {1}{2}\) |
| | |
| \(a_{2}\) |
\(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )}\) | \(\frac {1}{12}\) |
| | |
| \(a_{3}\) | \(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )^{2} \left (3+r \right )}\) | \(\frac {1}{144}\) |
| | |
| \(a_{4}\) |
\(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )^{2} \left (3+r \right )^{2} \left (4+r \right )}\) |
\(\frac {1}{2880}\) |
| | |
| \(a_{5}\) |
\(\frac {1}{\left (1+r \right )^{2} r \left (2+r \right )^{2} \left (3+r \right )^{2} \left (4+r \right )^{2} \left (5+r \right )}\) |
\(\frac {1}{86400}\) |
| | |
Using the above table, then the solution \(y_{1}\left (x \right )\) is
\begin{align*} y_{1}\left (x \right )&= x \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x \left (1+\frac {x}{2}+\frac {x^{2}}{12}+\frac {x^{3}}{144}+\frac {x^{4}}{2880}+\frac {x^{5}}{86400}+O\left (x^{6}\right )\right ) \end{align*}
Now the second solution \(y_{2}\left (x \right )\) is found. Let
\[ r_{1}-r_{2} = N \]
Where
\(N\) is positive integer which is the difference between
the two roots.
\(r_{1}\) is taken as the larger root. Hence for this problem we have
\(N=1\). Now we need to
determine if
\(C\) is zero or not. This is done by finding
\(\lim _{r\rightarrow r_{2}}a_{1}\left (r \right )\). If this limit exists, then
\(C = 0\), else we need to keep
the log term and
\(C \neq 0\). The above table shows that
\begin{align*} a_N &= a_{1} \\ &= \frac {1}{\left (1+r \right ) r} \end{align*}
Therefore
\begin{align*} \lim _{r\rightarrow r_{2}}\frac {1}{\left (1+r \right ) r}&= \lim _{r\rightarrow 0}\frac {1}{\left (1+r \right ) r}\\ &= \textit {undefined} \end{align*}
Since the limit does not exist then the log term is needed. Therefore the second solution has the
form
\[ y_{2}\left (x \right ) = C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) \]
Therefore
\begin{align*}
\frac {d}{d x}y_{2}\left (x \right ) &= C y_{1}^{\prime }\left (x \right ) \ln \left (x \right )+\frac {C y_{1}\left (x \right )}{x}+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x}\right ) \\
&= C y_{1}^{\prime }\left (x \right ) \ln \left (x \right )+\frac {C y_{1}\left (x \right )}{x}+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-1+n +r_{2}} b_{n} \left (n +r_{2}\right )\right ) \\
\frac {d^{2}}{d x^{2}}y_{2}\left (x \right ) &= C y_{1}^{\prime \prime }\left (x \right ) \ln \left (x \right )+\frac {2 C y_{1}^{\prime }\left (x \right )}{x}-\frac {C y_{1}\left (x \right )}{x^{2}}+\moverset {\infty }{\munderset {n =0}{\sum }}\left (\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )^{2}}{x^{2}}-\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x^{2}}\right ) \\
&= C y_{1}^{\prime \prime }\left (x \right ) \ln \left (x \right )+\frac {2 C y_{1}^{\prime }\left (x \right )}{x}-\frac {C y_{1}\left (x \right )}{x^{2}}+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-2+n +r_{2}} b_{n} \left (n +r_{2}\right ) \left (-1+n +r_{2}\right )\right ) \\
\end{align*}
Substituting these back into the given ode
\(x^{2} y^{\prime \prime }-x y = 0\) gives
\[
x^{2} \left (C y_{1}^{\prime \prime }\left (x \right ) \ln \left (x \right )+\frac {2 C y_{1}^{\prime }\left (x \right )}{x}-\frac {C y_{1}\left (x \right )}{x^{2}}+\moverset {\infty }{\munderset {n =0}{\sum }}\left (\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )^{2}}{x^{2}}-\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x^{2}}\right )\right )-x \left (C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right )\right ) = 0
\]
Which can be written as
\begin{equation}
\tag{7} \left (\left (y_{1}^{\prime \prime }\left (x \right ) x^{2}-y_{1}\left (x \right ) x \right ) \ln \left (x \right )+x^{2} \left (\frac {2 y_{1}^{\prime }\left (x \right )}{x}-\frac {y_{1}\left (x \right )}{x^{2}}\right )\right ) C +x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )^{2}}{x^{2}}-\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x^{2}}\right )\right )-x \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) = 0
\end{equation}
But since
\(y_{1}\left (x \right )\) is a solution to the ode, then
\[ y_{1}^{\prime \prime }\left (x \right ) x^{2}-y_{1}\left (x \right ) x = 0 \]
Eq (7) simplifes to
\begin{equation}
\tag{8} x^{2} \left (\frac {2 y_{1}^{\prime }\left (x \right )}{x}-\frac {y_{1}\left (x \right )}{x^{2}}\right ) C +x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )^{2}}{x^{2}}-\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x^{2}}\right )\right )-x \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) = 0
\end{equation}
Substituting
\(y_{1} = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r_{1}}\) into the
above gives
\begin{equation}
\tag{9} \left (2 \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-1+n +r_{1}} a_{n} \left (n +r_{1}\right )\right ) x -\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r_{1}}\right )\right ) C +\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-2+n +r_{2}} b_{n} \left (n +r_{2}\right ) \left (-1+n +r_{2}\right )\right ) x^{2}-x \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) = 0
\end{equation}
Since
\(r_{1} = 1\) and
\(r_{2} = 0\) then the above becomes
\begin{equation}
\tag{10} \left (2 \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n} a_{n} \left (1+n \right )\right ) x -\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{1+n}\right )\right ) C +\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-2+n} b_{n} n \left (n -1\right )\right ) x^{2}-x \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) = 0
\end{equation}
Which simplifies to
\begin{equation}
\tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 C \,x^{1+n} a_{n} \left (1+n \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} x^{1+n} C \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}n \,x^{n} b_{n} \left (n -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n} b_{n}\right ) = 0
\end{equation}
The next step
is to make all powers of
\(x\) be
\(n\) in each summation term. Going over each summation
term above with power of
\(x\) in it which is not already
\(x^{n}\) and adjusting the power and the
corresponding index gives
\begin{align*}
\moverset {\infty }{\munderset {n =0}{\sum }}2 C \,x^{1+n} a_{n} \left (1+n \right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}2 C a_{n -1} n \,x^{n} \\
\moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} x^{1+n} C \right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-C a_{n -1} x^{n}\right ) \\
\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n} b_{n}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-b_{n -1} x^{n}\right ) \\
\end{align*}
Substituting all the above in Eq (2A) gives the following
equation where now all powers of
\(x\) are the same and equal to
\(n\).
\begin{equation}
\tag{2B} \left (\moverset {\infty }{\munderset {n =1}{\sum }}2 C a_{n -1} n \,x^{n}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-C a_{n -1} x^{n}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}n \,x^{n} b_{n} \left (n -1\right )\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-b_{n -1} x^{n}\right ) = 0
\end{equation}
For
\(n=0\) in Eq. (2B), we
choose arbitray value for
\(b_{0}\) as
\(b_{0} = 1\). For
\(n=N\), where
\(N=1\) which is the difference between the two roots,
we are free to choose
\(b_{1} = 0\). Hence for
\(n=1\), Eq (2B) gives
\[ C -1 = 0 \]
Which is solved for
\(C\). Solving for
\(C\)
gives
\[ C=1 \]
For
\(n=2\), Eq (2B) gives
\[ 3 C a_{1}-b_{1}+2 b_{2} = 0 \]
Which when replacing the above values found already for
\(b_{n}\)
and the values found earlier for
\(a_{n}\) and for
\(C\), gives
\[ 2 b_{2}+\frac {3}{2} = 0 \]
Solving the above for
\(b_{2}\) gives
\[ b_{2}=-{\frac {3}{4}} \]
For
\(n=3\), Eq
(2B) gives
\[ 5 C a_{2}-b_{2}+6 b_{3} = 0 \]
Which when replacing the above values found already for
\(b_{n}\) and the values
found earlier for
\(a_{n}\) and for
\(C\), gives
\[ 6 b_{3}+\frac {7}{6} = 0 \]
Solving the above for
\(b_{3}\) gives
\[ b_{3}=-{\frac {7}{36}} \]
For
\(n=4\), Eq (2B) gives
\[ 7 C a_{3}-b_{3}+12 b_{4} = 0 \]
Which when replacing the above values found already for
\(b_{n}\) and the values found earlier
for
\(a_{n}\) and for
\(C\), gives
\[ 12 b_{4}+\frac {35}{144} = 0 \]
Solving the above for
\(b_{4}\) gives
\[ b_{4}=-{\frac {35}{1728}} \]
For
\(n=5\), Eq (2B) gives
\[ 9 C a_{4}-b_{4}+20 b_{5} = 0 \]
Which when
replacing the above values found already for
\(b_{n}\) and the values found earlier for
\(a_{n}\) and for
\(C\), gives
\[ 20 b_{5}+\frac {101}{4320} = 0 \]
Solving the above for
\(b_{5}\) gives
\[ b_{5}=-{\frac {101}{86400}} \]
Now that we found all
\(b_{n}\) and
\(C\), we can calculate
the second solution from
\[ y_{2}\left (x \right ) = C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) \]
Using the above value found for
\(C=1\) and all
\(b_{n}\), then the second
solution becomes
\[
y_{2}\left (x \right )= 1 \left (x \left (1+\frac {x}{2}+\frac {x^{2}}{12}+\frac {x^{3}}{144}+\frac {x^{4}}{2880}+\frac {x^{5}}{86400}+O\left (x^{6}\right )\right )\right ) \ln \left (x \right )+1-\frac {3 x^{2}}{4}-\frac {7 x^{3}}{36}-\frac {35 x^{4}}{1728}-\frac {101 x^{5}}{86400}+O\left (x^{6}\right )
\]
Therefore the homogeneous solution is
\begin{align*}
y_h(x) &= c_1 y_{1}\left (x \right )+c_2 y_{2}\left (x \right ) \\
&= c_1 x \left (1+\frac {x}{2}+\frac {x^{2}}{12}+\frac {x^{3}}{144}+\frac {x^{4}}{2880}+\frac {x^{5}}{86400}+O\left (x^{6}\right )\right ) + c_2 \left (1 \left (x \left (1+\frac {x}{2}+\frac {x^{2}}{12}+\frac {x^{3}}{144}+\frac {x^{4}}{2880}+\frac {x^{5}}{86400}+O\left (x^{6}\right )\right )\right ) \ln \left (x \right )+1-\frac {3 x^{2}}{4}-\frac {7 x^{3}}{36}-\frac {35 x^{4}}{1728}-\frac {101 x^{5}}{86400}+O\left (x^{6}\right )\right ) \\
\end{align*}
Hence the final solution is
\begin{align*}
y &= y_h \\
&= c_1 x \left (1+\frac {x}{2}+\frac {x^{2}}{12}+\frac {x^{3}}{144}+\frac {x^{4}}{2880}+\frac {x^{5}}{86400}+O\left (x^{6}\right )\right )+c_2 \left (x \left (1+\frac {x}{2}+\frac {x^{2}}{12}+\frac {x^{3}}{144}+\frac {x^{4}}{2880}+\frac {x^{5}}{86400}+O\left (x^{6}\right )\right ) \ln \left (x \right )+1-\frac {3 x^{2}}{4}-\frac {7 x^{3}}{36}-\frac {35 x^{4}}{1728}-\frac {101 x^{5}}{86400}+O\left (x^{6}\right )\right ) \\
\end{align*}
✓ Maple. Time used: 0.011 (sec). Leaf size: 58
Order:=6;
ode:=x^2*diff(diff(y(x),x),x)-y(x)*x = 0;
dsolve(ode,y(x),type='series',x=0);
\[
y = c_1 x \left (1+\frac {1}{2} x +\frac {1}{12} x^{2}+\frac {1}{144} x^{3}+\frac {1}{2880} x^{4}+\frac {1}{86400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (\ln \left (x \right ) \left (x +\frac {1}{2} x^{2}+\frac {1}{12} x^{3}+\frac {1}{144} x^{4}+\frac {1}{2880} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (1-\frac {3}{4} x^{2}-\frac {7}{36} x^{3}-\frac {35}{1728} x^{4}-\frac {101}{86400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right )
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )-x y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\frac {y \left (x \right )}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (x \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )-\frac {y \left (x \right )}{x}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=0, P_{3}\left (x \right )=-\frac {1}{x}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right ) x -y \left (x \right )=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & x \cdot \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +1+r \right ) \left (k +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r \left (-1+r \right ) x^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +1} \left (k +1+r \right ) \left (k +r \right )-a_{k}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r \left (-1+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, 1\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k +1} \left (k +1+r \right ) \left (k +r \right )-a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {a_{k}}{\left (k +1+r \right ) \left (k +r \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=\frac {a_{k}}{\left (k +1\right ) k} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +1}=\frac {a_{k}}{\left (k +1\right ) k}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =1 \\ {} & {} & a_{k +1}=\frac {a_{k}}{\left (k +2\right ) \left (k +1\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =1 \\ {} & {} & \left [y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1}, a_{k +1}=\frac {a_{k}}{\left (k +2\right ) \left (k +1\right )}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y \left (x \right )=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +1}\right ), a_{k +1}=\frac {a_{k}}{\left (k +1\right ) k}, b_{k +1}=\frac {b_{k}}{\left (k +2\right ) \left (k +1\right )}\right ] \end {array} \]
✓ Mathematica. Time used: 0.012 (sec). Leaf size: 85
ode=x^2*D[y[x],{x,2}]-x*y[x]==0;
ic={};
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
\[
y(x)\to c_1 \left (\frac {1}{144} x \left (x^3+12 x^2+72 x+144\right ) \log (x)+\frac {-47 x^4-480 x^3-2160 x^2-1728 x+1728}{1728}\right )+c_2 \left (\frac {x^5}{2880}+\frac {x^4}{144}+\frac {x^3}{12}+\frac {x^2}{2}+x\right )
\]
✓ Sympy. Time used: 0.224 (sec). Leaf size: 29
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
\[
y{\left (x \right )} = C_{1} x \left (\frac {x^{4}}{2880} + \frac {x^{3}}{144} + \frac {x^{2}}{12} + \frac {x}{2} + 1\right ) + O\left (x^{6}\right )
\]