2.2.20 Problem 19
Internal
problem
ID
[10098]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
2.0
Problem
number
:
19
Date
solved
:
Thursday, November 27, 2025 at 10:18:52 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Solved as second order Airy ode
Time used: 0.690 (sec)
Solve
\begin{align*}
y^{\prime \prime }-y^{\prime }-x y-x^{3}+1&=0 \\
\end{align*}
This is Airy ODE. It has the general form
\[ a y^{\prime \prime } + b y^{\prime } + c x y = F(x) \]
Where in this case
\begin{align*} a &= 1\\ b &= -1\\ c &= -1\\ F &= x^{3}-1 \end{align*}
Therefore the solution to the homogeneous Airy ODE becomes
\[
y = c_1 \,{\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )+c_2 \,{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )
\]
Since this is inhomogeneous Airy
ODE, then we need to find the particular solution. The particular solution
\(y_p\) can be found
using either the method of undetermined coefficients, or the method of variation of
parameters. The method of variation of parameters will be used as it is more general and
can be used when the coefficients of the ODE depend on
\(x\) as well. Let
\begin{equation}
\tag{1} y_p(x) = u_1 y_1 + u_2 y_2
\end{equation}
Where
\(u_1,u_2\) to be
determined, and
\(y_1,y_2\) are the two basis solutions (the two linearly independent solutions of the
homogeneous ODE) found earlier when solving the homogeneous ODE as
\begin{align*}
y_1 &= {\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) \\
y_2 &= {\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) \\
\end{align*}
In the Variation of
parameters
\(u_1,u_2\) are found using
\begin{align*}
\tag{2} u_1 &= -\int \frac {y_2 f(x)}{a W(x)} \\
\tag{3} u_2 &= \int \frac {y_1 f(x)}{a W(x)} \\
\end{align*}
Where
\(W(x)\) is the Wronskian and
\(a\) is the coefficient in front
of
\(y''\) in the given ODE. The Wronskian is given by
\(W= \begin {vmatrix} y_1 & y_{2} \\ y_{1}^{\prime } & y_{2}^{\prime } \end {vmatrix} \). Hence
\[ W = \begin {vmatrix} {\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) & {\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) \\ \frac {d}{dx}\left ({\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )\right ) & \frac {d}{dx}\left ({\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )\right ) \end {vmatrix} \]
Which gives
\[ W = \begin {vmatrix} {\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) & {\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) \\ \frac {{\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )}{2}-{\mathrm e}^{\frac {x}{2}} \left (-1\right )^{{1}/{3}} \operatorname {AiryAi}\left (1, \left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) & \frac {{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )}{2}-{\mathrm e}^{\frac {x}{2}} \left (-1\right )^{{1}/{3}} \operatorname {AiryBi}\left (1, \left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) \end {vmatrix} \]
Therefore
\[
W = \left ({\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )\right )\left (\frac {{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )}{2}-{\mathrm e}^{\frac {x}{2}} \left (-1\right )^{{1}/{3}} \operatorname {AiryBi}\left (1, \left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )\right ) - \left ({\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )\right )\left (\frac {{\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )}{2}-{\mathrm e}^{\frac {x}{2}} \left (-1\right )^{{1}/{3}} \operatorname {AiryAi}\left (1, \left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )\right )
\]
Which simplifies to
\[
W = -{\mathrm e}^{x} \operatorname {AiryAi}\left (-\frac {\left (4 x +1\right ) \left (-1\right )^{{1}/{3}}}{4}\right ) \left (-1\right )^{{1}/{3}} \operatorname {AiryBi}\left (1, -\frac {\left (4 x +1\right ) \left (-1\right )^{{1}/{3}}}{4}\right )+{\mathrm e}^{x} \operatorname {AiryBi}\left (-\frac {\left (4 x +1\right ) \left (-1\right )^{{1}/{3}}}{4}\right ) \left (-1\right )^{{1}/{3}} \operatorname {AiryAi}\left (1, -\frac {\left (4 x +1\right ) \left (-1\right )^{{1}/{3}}}{4}\right )
\]
Which simplifies to
\[
W = -\frac {{\mathrm e}^{x} \left (1+i \sqrt {3}\right )}{2 \pi }
\]
Therefore Eq. (2) becomes
\[
u_1 = -\int \frac {{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) \left (x^{3}-1\right )}{-\frac {{\mathrm e}^{x} \left (1+i \sqrt {3}\right )}{2 \pi }}\,dx
\]
Which simplifies to
\[
u_1 = - \int \frac {\left (-2 x^{3}+2\right ) \pi \,{\mathrm e}^{-\frac {x}{2}} \operatorname {AiryBi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )}{1+i \sqrt {3}}d x
\]
Hence
\[
u_1 = -\int _{0}^{x}\frac {\left (-2 \alpha ^{3}+2\right ) \pi \,{\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryBi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )}{1+i \sqrt {3}}d \alpha
\]
And Eq. (3) becomes
\[
u_2 = \int \frac {{\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) \left (x^{3}-1\right )}{-\frac {{\mathrm e}^{x} \left (1+i \sqrt {3}\right )}{2 \pi }}\,dx
\]
Which simplifies to
\[
u_2 = \int \frac {\left (-2 x^{3}+2\right ) \pi \,{\mathrm e}^{-\frac {x}{2}} \operatorname {AiryAi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )}{1+i \sqrt {3}}d x
\]
Hence
\[
u_2 = \int _{0}^{x}\frac {\left (-2 \alpha ^{3}+2\right ) \pi \,{\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryAi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )}{1+i \sqrt {3}}d \alpha
\]
Therefore the particular
solution, from equation (1) is
\[
y_p(x) = -\int _{0}^{x}\frac {\left (-2 \alpha ^{3}+2\right ) \pi \,{\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryBi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )}{1+i \sqrt {3}}d \alpha {\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )+{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right ) \int _{0}^{x}\frac {\left (-2 \alpha ^{3}+2\right ) \pi \,{\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryAi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )}{1+i \sqrt {3}}d \alpha
\]
Which simplifies to
\[
y_p(x) = -\frac {2 \,{\mathrm e}^{\frac {x}{2}} \pi \left (\operatorname {AiryBi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right ) \int _{0}^{x}\left (\alpha ^{3}-1\right ) {\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryAi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )d \alpha -\operatorname {AiryAi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right ) \int _{0}^{x}\left (\alpha ^{3}-1\right ) {\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryBi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )d \alpha \right )}{1+i \sqrt {3}}
\]
Therefore the general solution is
\begin{align*}
y &= y_h + y_p \\
&= \left (c_1 \,{\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )+c_2 \,{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )\right ) + \left (-\frac {2 \,{\mathrm e}^{\frac {x}{2}} \pi \left (\operatorname {AiryBi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right ) \int _{0}^{x}\left (\alpha ^{3}-1\right ) {\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryAi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )d \alpha -\operatorname {AiryAi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right ) \int _{0}^{x}\left (\alpha ^{3}-1\right ) {\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryBi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )d \alpha \right )}{1+i \sqrt {3}}\right ) \\
&= c_1 \,{\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )+c_2 \,{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )-\frac {2 \,{\mathrm e}^{\frac {x}{2}} \pi \left (\operatorname {AiryBi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right ) \int _{0}^{x}\left (\alpha ^{3}-1\right ) {\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryAi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )d \alpha -\operatorname {AiryAi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right ) \int _{0}^{x}\left (\alpha ^{3}-1\right ) {\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryBi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )d \alpha \right )}{1+i \sqrt {3}} \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= c_1 \,{\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )+c_2 \,{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\left (-x -\frac {1}{4}\right ) \left (-1\right )^{{1}/{3}}\right )-\frac {2 \,{\mathrm e}^{\frac {x}{2}} \pi \left (\operatorname {AiryBi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right ) \int _{0}^{x}\left (\alpha ^{3}-1\right ) {\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryAi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )d \alpha -\operatorname {AiryAi}\left (-\frac {\left (x +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right ) \int _{0}^{x}\left (\alpha ^{3}-1\right ) {\mathrm e}^{-\frac {\alpha }{2}} \operatorname {AiryBi}\left (-\frac {\left (\alpha +\frac {1}{4}\right ) \left (1+i \sqrt {3}\right )}{2}\right )d \alpha \right )}{1+i \sqrt {3}} \\
\end{align*}
✓ Maple. Time used: 0.005 (sec). Leaf size: 67
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-y(x)*x-x^3+1 = 0;
dsolve(ode,y(x), singsol=all);
\[
y = {\mathrm e}^{\frac {x}{2}} \left (\pi \int {\mathrm e}^{-\frac {x}{2}} \operatorname {AiryAi}\left (\frac {1}{4}+x \right ) \left (x^{3}-1\right )d x \operatorname {AiryBi}\left (\frac {1}{4}+x \right )-\pi \int {\mathrm e}^{-\frac {x}{2}} \operatorname {AiryBi}\left (\frac {1}{4}+x \right ) \left (x^{3}-1\right )d x \operatorname {AiryAi}\left (\frac {1}{4}+x \right )+\operatorname {AiryBi}\left (\frac {1}{4}+x \right ) c_1 +\operatorname {AiryAi}\left (\frac {1}{4}+x \right ) c_2 \right )
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful
✓ Mathematica. Time used: 0.096 (sec). Leaf size: 107
ode=D[y[x],{x,2}]-D[y[x],x]-x*y[x]-x^3+1==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to e^{x/2} \left (\operatorname {AiryAi}\left (x+\frac {1}{4}\right ) \int _1^x-e^{-\frac {K[1]}{2}} \pi \operatorname {AiryBi}\left (K[1]+\frac {1}{4}\right ) \left (K[1]^3-1\right )dK[1]+\operatorname {AiryBi}\left (x+\frac {1}{4}\right ) \int _1^xe^{-\frac {K[2]}{2}} \pi \operatorname {AiryAi}\left (K[2]+\frac {1}{4}\right ) \left (K[2]^3-1\right )dK[2]+c_1 \operatorname {AiryAi}\left (x+\frac {1}{4}\right )+c_2 \operatorname {AiryBi}\left (x+\frac {1}{4}\right )\right ) \end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x**3 - x*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)) + 1,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x**3 + x*y(x) + Derivative(y(x), x) - Derivative(y(x), (x, 2)) - 1 cannot be solved by the factorable group method