2.2.45 Problem 44

Maple
Mathematica
Sympy

Internal problem ID [10123]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 44
Date solved : Monday, December 01, 2025 at 08:39:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-y x -x^{2}&=0 \\ \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 44
ode:=diff(diff(y(x),x),x)-x^2*diff(y(x),x)-y(x)*x-x^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {x^{3}}{6}} \sqrt {x}\, \operatorname {BesselI}\left (\frac {1}{6}, \frac {x^{3}}{6}\right ) c_2 +{\mathrm e}^{\frac {x^{3}}{6}} \sqrt {x}\, \operatorname {BesselK}\left (\frac {1}{6}, \frac {x^{3}}{6}\right ) c_1 -\frac {x}{2} \]

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
   <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      <- Bessel successful 
   <- special function solution successful 
<- solving first the homogeneous part of the ODE successful
 
Mathematica. Time used: 0.193 (sec). Leaf size: 224
ode=D[y[x],{x,2}]-x^2*D[y[x],x]-x*y[x]-x^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {e^{\frac {x^3}{6}} \left (12 \left (x^3\right )^{5/6} \operatorname {Gamma}\left (\frac {1}{6}\right ) \operatorname {Gamma}\left (\frac {7}{6}\right ) \operatorname {BesselI}\left (\frac {1}{6},\frac {x^3}{6}\right ) \, _1F_1\left (-\frac {2}{3};-\frac {1}{3};-\frac {x^3}{3}\right )+\sqrt [3]{2} 3^{2/3} \sqrt [6]{x^3} x^6 \operatorname {Gamma}\left (\frac {1}{6}\right ) \operatorname {Gamma}\left (\frac {5}{6}\right ) \operatorname {BesselI}\left (-\frac {1}{6},\frac {x^3}{6}\right ) \, _1F_1\left (\frac {2}{3};\frac {7}{3};-\frac {x^3}{3}\right )-4 \operatorname {Gamma}\left (\frac {7}{6}\right ) \left (6 \sqrt [3]{2} 3^{2/3} c_1 x^{5/2} \operatorname {Gamma}\left (\frac {5}{6}\right ) \operatorname {BesselI}\left (-\frac {1}{6},\frac {x^3}{6}\right )+\operatorname {Gamma}\left (\frac {1}{6}\right ) \left (3 \left (x^3\right )^{5/6}+2 \sqrt [3]{-1} 3^{2/3} c_2 x^{5/2}\right ) \operatorname {BesselI}\left (\frac {1}{6},\frac {x^3}{6}\right )\right )\right )}{24\ 2^{2/3} 3^{5/6} x^2 \operatorname {Gamma}\left (\frac {7}{6}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*Derivative(y(x), x) - x**2 - x*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) + 1 + y(x)/x - Derivative(y(x), (x, 2))/x**2 cannot be solved by the factorable group method