2.4.72 Problem 69
Internal
problem
ID
[10235]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
69
Date
solved
:
Thursday, November 27, 2025 at 10:27:16 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Solved as second order ode using change of variable on x method 2
Time used: 0.345 (sec)
Solve
\begin{align*}
y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y&=0 \\
\end{align*}
In normal form the ode
\begin{align*} y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y&=0 \tag {1} \end{align*}
Becomes
\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}
Where
\begin{align*} p \left (x \right )&=2 \cot \left (2 x \right )\\ q \left (x \right )&=-4 \csc \left (2 x \right )^{2} \end{align*}
Applying change of variables \(\tau = g \left (x \right )\) to (2) gives
\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }y \left (\tau \right )\right )+q_{1} y \left (\tau \right )&=0 \tag {3} \end{align*}
Where \(\tau \) is the new independent variable, and
\begin{align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {5} \end{align*}
Let \(p_{1} = 0\). Eq (4) simplifies to
\begin{align*} \tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )&=0 \end{align*}
This ode is solved resulting in
\begin{align*} \tau &= \int {\mathrm e}^{-\int p \left (x \right )d x}d x\\ &= \int {\mathrm e}^{-\int 2 \cot \left (2 x \right )d x}d x\\ &= \int e^{\frac {\ln \left (\csc \left (2 x \right )^{2}\right )}{2}} \,dx\\ &= \int \csc \left (2 x \right )d x\\ &= -\frac {\ln \left (\csc \left (2 x \right )+\cot \left (2 x \right )\right )}{2}\tag {6} \end{align*}
Using (6) to evaluate \(q_{1}\) from (5) gives
\begin{align*} q_{1} \left (\tau \right ) &= \frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\\ &= \frac {-4 \csc \left (2 x \right )^{2}}{\csc \left (2 x \right )^{2}}\\ &= -4\tag {7} \end{align*}
Substituting the above in (3) and noting that now \(p_{1} = 0\) results in
\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+q_{1} y \left (\tau \right )&=0 \\ \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )-4 y \left (\tau \right )&=0 \end{align*}
The above ode is now solved for \(y \left (\tau \right )\).
This is second order with constant coefficients homogeneous ODE. In standard form the
ODE is
\[ A y''(\tau ) + B y'(\tau ) + C y(\tau ) = 0 \]
Where in the above
\(A=1, B=0, C=-4\). Let the solution be
\(y \left (\tau \right )=e^{\lambda \tau }\). Substituting this into the ODE
gives
\[ \lambda ^{2} {\mathrm e}^{\tau \lambda }-4 \,{\mathrm e}^{\tau \lambda } = 0 \tag {1} \]
Since exponential function is never zero, then dividing Eq(2) throughout by
\(e^{\lambda \tau }\)
gives
\[ \lambda ^{2}-4 = 0 \tag {2} \]
Equation (2) is the characteristic equation of the ODE. Its roots determine the
general solution form.Using the quadratic formula
\[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]
Substituting
\(A=1, B=0, C=-4\) into the above gives
\begin{align*} \lambda _{1,2} &= \frac {0}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {0^2 - (4) \left (1\right )\left (-4\right )}\\ &= \pm 2 \end{align*}
Hence
\begin{align*}
\lambda _1 &= + 2 \\
\lambda _2 &= - 2 \\
\end{align*}
Which simplifies to
\begin{align*}
\lambda _1 &= 2 \\
\lambda _2 &= -2 \\
\end{align*}
Since roots are distinct, then the solution is
\begin{align*}
y \left (\tau \right ) &= c_1 e^{\lambda _1 \tau } + c_2 e^{\lambda _2 \tau } \\
y \left (\tau \right ) &= c_1 e^{\left (2\right )\tau } +c_2 e^{\left (-2\right )\tau } \\
\end{align*}
Or
\[
y \left (\tau \right ) =c_1 \,{\mathrm e}^{2 \tau }+c_2 \,{\mathrm e}^{-2 \tau }
\]
The above solution is
now transformed back to
\(y\) using (6) which results in
\[
y = \frac {c_1}{\csc \left (2 x \right )+\cot \left (2 x \right )}+c_2 \left (\csc \left (2 x \right )+\cot \left (2 x \right )\right )
\]
Summary of solutions found
\begin{align*}
y &= \frac {c_1}{\csc \left (2 x \right )+\cot \left (2 x \right )}+c_2 \left (\csc \left (2 x \right )+\cot \left (2 x \right )\right ) \\
\end{align*}
✓ Maple. Time used: 0.102 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)*sin(2*x)^2+diff(y(x),x)*sin(4*x)-4*y(x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = c_1 \csc \left (2 x \right )+c_2 \cot \left (2 x \right )
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power \
@ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x),\
dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
Change of variables used:
[x = 1/4*arccos(t)]
Linear ODE actually solved:
-u(t)+(3*t^2-2*t-1)*diff(u(t),t)+(2*t^3-2*t^2-2*t+2)*diff(diff(u(t),t),t)\
= 0
<- change of variables successful
✓ Mathematica. Time used: 0.032 (sec). Leaf size: 29
ode=D[y[x],{x,2}]*Sin[2*x]^2+D[y[x],x]*Sin[4*x]-4*y[x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {c_1-i c_2 \cos (2 x)}{\sqrt {\sin ^2(2 x)}} \end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-4*y(x) + sin(2*x)**2*Derivative(y(x), (x, 2)) + sin(4*x)*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(4*y(x) - sin(2*x)**2*Derivative(y(x), (x, 2)))/sin(4*x) + Derivative(y(x), x) cannot be solved by the factorable group method