2.1.81 Problem 80

Solved using first_order_ode_reduced_riccati
Solved using first_order_ode_riccati
Maple
Mathematica
Sympy

Internal problem ID [10067]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 80
Date solved : Thursday, November 27, 2025 at 10:10:11 AM
CAS classification : [[_Riccati, _special]]

Solved using first_order_ode_reduced_riccati

Time used: 0.046 (sec)

Solve

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ \end{align*}
This is reduced Riccati ode of the form
\begin{align*} y^{\prime }&=a \,x^{n}+b y^{2} \end{align*}

Comparing the given ode to the above shows that

\begin{align*} a &= 1\\ b &= 1\\ n &= 2 \end{align*}

Since \(n\neq -2\) then the solution of the reduced Riccati ode is given by

\begin{align*} w & =\sqrt {x}\left \{ \begin {array}[c]{cc} c_{1}\operatorname {BesselJ}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {ab} x^{k}\right ) +c_{2}\operatorname {BesselY}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {ab}x^{k}\right ) & ab>0\\ c_{1}\operatorname {BesselI}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {-ab}x^{k}\right ) +c_{2}\operatorname {BesselK}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {-ab}x^{k}\right ) & ab<0 \end {array} \right . \tag {1}\\ y & =-\frac {1}{b}\frac {w^{\prime }}{w}\nonumber \\ k &=1+\frac {n}{2}\nonumber \end{align*}

Since \(ab>0\) then EQ(1) gives

\begin{align*} k &= 2\\ w &= \sqrt {x}\, \left (c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+c_2 \operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )\right ) \end{align*}

Therefore the solution becomes

\begin{align*} y & =-\frac {1}{b}\frac {w^{\prime }}{w} \end{align*}

Substituting the value of \(b,w\) found above and simplifying gives

\[ y = \frac {\left (-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_2 -\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_1 \right ) x}{c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+c_2 \operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \]
Letting \(c_2 = 1\) the above becomes
\[ y = \frac {\left (-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )-\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_1 \right ) x}{c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \]
Simplifying the above gives
\begin{align*} y &= -\frac {\left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_1 +\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )\right ) x}{c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \\ \end{align*}
Figure 2.164: Slope field \(y^{\prime } = x^{2}+y^{2}\)

Summary of solutions found

\begin{align*} y &= -\frac {\left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_1 +\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )\right ) x}{c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \\ \end{align*}
Solved using first_order_ode_riccati

Time used: 0.131 (sec)

Solve

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ \end{align*}
In canonical form the ODE is
\begin{align*} y' &= F(x,y)\\ &= x^{2}+y^{2} \end{align*}

This is a Riccati ODE. Comparing the ODE to solve

\[ y' = x^{2}+y^{2} \]
With Riccati ODE standard form
\[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \]
Shows that \(f_0(x)=x^{2}\), \(f_1(x)=0\) and \(f_2(x)=1\). Let
\begin{align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{u} \tag {1} \end{align*}

Using the above substitution in the given ODE results (after some simplification) in a second order ODE to solve for \(u(x)\) which is

\begin{align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end{align*}

But

\begin{align*} f_2' &=0\\ f_1 f_2 &=0\\ f_2^2 f_0 &=x^{2} \end{align*}

Substituting the above terms back in equation (2) gives

\[ u^{\prime \prime }\left (x \right )+x^{2} u \left (x \right ) = 0 \]
Writing the ode as
\begin{align*} x^{2} \left (\frac {d^{2}u}{d x^{2}}\right )+x^{4} u = 0\tag {1} \end{align*}

Bessel ode has the form

\begin{align*} x^{2} \left (\frac {d^{2}u}{d x^{2}}\right )+\left (\frac {d u}{d x}\right ) x +\left (-n^{2}+x^{2}\right ) u = 0\tag {2} \end{align*}

The generalized form of Bessel ode is given by Bowman (1958) as the following

\begin{align*} x^{2} \left (\frac {d^{2}u}{d x^{2}}\right )+\left (1-2 \alpha \right ) x \left (\frac {d u}{d x}\right )+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) u = 0\tag {3} \end{align*}

With the standard solution

\begin{align*} u&=x^{\alpha } \left (c_1 \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_2 \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end{align*}

Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives

\begin{align*} \alpha &= {\frac {1}{2}}\\ \beta &= {\frac {1}{2}}\\ n &= {\frac {1}{4}}\\ \gamma &= 2 \end{align*}

Substituting all the above into (4) gives the solution as

\begin{align*} u = c_1 \sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+c_2 \sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \end{align*}

Taking derivative gives

\begin{equation} \tag{4} u^{\prime }\left (x \right ) = \frac {c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )}{2 \sqrt {x}}+c_1 \,x^{{3}/{2}} \left (-\operatorname {BesselJ}\left (\frac {5}{4}, \frac {x^{2}}{2}\right )+\frac {\operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )}{2 x^{2}}\right )+\frac {c_2 \operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )}{2 \sqrt {x}}+c_2 \,x^{{3}/{2}} \left (-\operatorname {BesselY}\left (\frac {5}{4}, \frac {x^{2}}{2}\right )+\frac {\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )}{2 x^{2}}\right ) \end{equation}
Substituting equations (3,4) into (1) results in
\begin{align*} y &= \frac {-u'}{f_2 u} \\ y &= \frac {-u'}{u} \\ y &= \frac {\left (-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_2 -\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_1 \right ) x}{c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+c_2 \operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \\ \end{align*}
Doing change of constants, the above solution becomes
\[ y = -\frac {\frac {\operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )}{2 \sqrt {x}}+x^{{3}/{2}} \left (-\operatorname {BesselJ}\left (\frac {5}{4}, \frac {x^{2}}{2}\right )+\frac {\operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )}{2 x^{2}}\right )+\frac {c_3 \operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )}{2 \sqrt {x}}+c_3 \,x^{{3}/{2}} \left (-\operatorname {BesselY}\left (\frac {5}{4}, \frac {x^{2}}{2}\right )+\frac {\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )}{2 x^{2}}\right )}{\sqrt {x}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+c_3 \sqrt {x}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \]
Simplifying the above gives
\begin{align*} y &= \frac {\left (-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_3 -\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )\right ) x}{c_3 \operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \\ \end{align*}
Figure 2.165: Slope field \(y^{\prime } = x^{2}+y^{2}\)

Summary of solutions found

\begin{align*} y &= \frac {\left (-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_3 -\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )\right ) x}{c_3 \operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \\ \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 43
ode:=diff(y(x),x) = x^2+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x \left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_1 +\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )\right )}{c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \]

Maple trace

Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati Special 
<- Riccati Special successful
 

Maple step by step

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=x^{2}+y \left (x \right )^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=x^{2}+y \left (x \right )^{2} \end {array} \]
Mathematica. Time used: 0.087 (sec). Leaf size: 169
ode=D[y[x],x]==x^2+y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^2 \left (-2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {x^2}{2}\right )+c_1 \left (\operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )\right )\right )-c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )}{2 x \left (\operatorname {BesselJ}\left (\frac {1}{4},\frac {x^2}{2}\right )+c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )}\\ y(x)&\to -\frac {x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )-x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list