|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+b y^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{2}+a = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 \left (2 y+x \right ) y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+f \left (x \right ) y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y y^{\prime \prime }-{y^{\prime }}^{2} x +y y^{\prime }+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y y^{\prime \prime }-{y^{\prime }}^{2} x +a y y^{\prime }+b x y^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 x^{2} y \left (-1+y\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (-1+y\right ) y^{\prime }+\left (a y^{2}+b \right ) \left (-1+y\right )^{3}+c x y^{2} \left (-1+y\right )+d \,x^{2} y^{2} \left (1+y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 y^{3} y^{\prime \prime }+y^{4}-a^{2} x y^{2}-1 = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 y^{3} y^{\prime \prime }+y^{2} {y^{\prime }}^{2}-a \,x^{2}-b x -c = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime } y^{\prime }-x^{2} y y^{\prime }-x y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{3} y+3 x y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y {y^{\prime \prime }}^{2}-a \,{\mathrm e}^{2 x} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \sqrt {a {y^{\prime \prime }}^{2}+b {y^{\prime }}^{2}}+c y y^{\prime \prime }+d {y^{\prime }}^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }-y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+a y y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 x y-1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime \prime } = f \left (y\right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left [x^{\prime \prime }\left (t \right ) = \left (3 \cos \left (a t +b \right )^{2}-1\right ) c^{2} x \left (t \right )+\frac {3 c^{2} y \left (t \right ) \sin \left (2 a t b \right )}{2}, y^{\prime \prime }\left (t \right ) = \left (3 \sin \left (a t +b \right )^{2}-1\right ) c^{2} y \left (t \right )+\frac {3 c^{2} x \left (t \right ) \sin \left (2 a t b \right )}{2}\right ]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) \left (a \left (p x \left (t \right )+q y \left (t \right )\right )+\alpha \right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\beta +b \left (p x \left (t \right )+q y \left (t \right )\right )\right )]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -x \left (t \right ) y \left (t \right )^{2}+x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ) x \left (t \right )^{2}-x \left (t \right )-y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}-1\right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}-1\right )]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left [x^{\prime \prime }\left (t \right ) = a \,{\mathrm e}^{2 x \left (t \right )}-{\mathrm e}^{-x \left (t \right )}+{\mathrm e}^{-2 x \left (t \right )} \cos \left (y \left (t \right )\right )^{2}, y^{\prime \prime }\left (t \right ) = {\mathrm e}^{-2 x \left (t \right )} \sin \left (y \left (t \right )\right ) \cos \left (y \left (t \right )\right )-\frac {\sin \left (y \left (t \right )\right )}{\cos \left (y \left (t \right )\right )^{3}}\right ]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left [x^{\prime \prime }\left (t \right ) = \frac {k x \left (t \right )}{\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{{3}/{2}}}, y^{\prime \prime }\left (t \right ) = \frac {k y \left (t \right )}{\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{{3}/{2}}}\right ]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )-z \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (-x \left (t \right )+z \left (t \right )\right ), z^{\prime }\left (t \right ) = z \left (t \right ) \left (x \left (t \right )-y \left (t \right )\right )]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left [x^{\prime }\left (t \right ) = \frac {x \left (t \right )^{2}}{2}-\frac {y \left (t \right )}{24}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )-3 z \left (t \right ), z^{\prime }\left (t \right ) = 3 x \left (t \right ) z \left (t \right )-\frac {y \left (t \right )^{2}}{6}\right ]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )^{2}-z \left (t \right )^{2}\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (z \left (t \right )^{2}-x \left (t \right )^{2}\right ), z^{\prime }\left (t \right ) = z \left (t \right ) \left (x \left (t \right )^{2}-y \left (t \right )^{2}\right )]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -x \left (t \right ) y \left (t \right )^{2}+x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ) x \left (t \right )^{2}-x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )^{2}-x \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+k \left (a x +b \right )^{n} \left (c x +d \right )^{-n -4}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } x^{2} = x^{2} y^{2}+a \,x^{2 m} \left (b \,x^{m}+c \right )^{n}-\frac {n^{2}}{4}+\frac {1}{4}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +m +1}-a \,x^{m}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+c k \,x^{k -1}-b c \,x^{m +k}-a \,c^{2} x^{n +2 k}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} a \left (x^{2}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+b x \left (x^{2}-1\right ) y+c \,x^{2}+d x +s = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = c y^{2}-b \,x^{m -1} y+a \,x^{n -2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = a \,x^{n -2} y^{2}+b \,x^{m -1} y+c
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b n \,x^{n -1}-a \,b^{2} {\mathrm e}^{\lambda x} x^{2 n}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \,x^{n} y^{2}+b \lambda \,{\mathrm e}^{\lambda x}-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,{\mathrm e}^{\lambda x}+c \right ) y+c \,x^{n}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} {\mathrm e}^{2 \lambda \,x^{2}}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}-\lambda ^{2}+a \cosh \left (\lambda x \right )^{n} \sinh \left (\lambda x \right )^{-n -4}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{2 m} \ln \left (x \right )^{n}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2}+a
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2 k}+a k \ln \left (\beta x \right )^{k -1}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y^{\prime } = a \,x^{n} y^{2}+b -a \,b^{2} x^{n} \ln \left (x \right )^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } x^{2} = x^{2} y^{2}+a \left (b \ln \left (x \right )+c \right )^{n}+\frac {1}{4}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x +a \right )^{n} \sin \left (\lambda x +b \right )^{-n -4}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+a \sin \left (b x \right )^{m} y+a \sin \left (b x \right )^{m}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+\lambda ^{2}+c \cos \left (\lambda x +a \right )^{n} \cos \left (\lambda x +b \right )^{-n -4}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+a \cos \left (b x \right )^{m} y+a \cos \left (b x \right )^{m}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+\lambda b
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x \right )^{n} \cos \left (\lambda x \right )^{-n -4}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}-2 \lambda ^{2} \tan \left (x \right )^{2}-2 \lambda ^{2} \cot \left (\lambda x \right )^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arcsin \left (x \right )^{n} y+b m \,x^{m -1}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arcsin \left (x \right )^{n}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arcsin \left (x \right )^{m}-n y
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arccos \left (x \right )^{n} y+b m \,x^{m -1}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arccos \left (x \right )^{n}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arccos \left (x \right )^{m}-n y
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arctan \left (x \right )^{n} y+b m \,x^{m -1}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arctan \left (x \right )^{n}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arctan \left (x \right )^{m}-n y
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}-b \lambda \,x^{m} \operatorname {arccot}\left (x \right )^{n} y+b m \,x^{m -1}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \operatorname {arccot}\left (x \right )^{n}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \operatorname {arccot}\left (x \right )^{m}-n y
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a \,x^{n} f \left (x \right ) y+a n \,x^{n -1}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}+a n \,x^{n -1}-a^{2} x^{2 n} f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}+g \left (x \right ) y+a n \,x^{n -1}-a \,x^{n} g \left (x \right )-a^{2} x^{2 n} f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a \,x^{n} g \left (x \right ) y+a n \,x^{n -1}+a^{2} x^{2 n} \left (g \left (x \right )-f \left (x \right )\right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-f \left (x \right ) \left ({\mathrm e}^{\lambda x} a +b \right ) y+a \lambda \,{\mathrm e}^{\lambda x}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}+g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{\lambda x} g \left (x \right )-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}+a^{2} {\mathrm e}^{2 \lambda x} \left (g \left (x \right )-f \left (x \right )\right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} f \left (x \right ) {\mathrm e}^{2 \lambda \,x^{2}}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}+\lambda x y+a f \left (x \right ) {\mathrm e}^{\lambda x}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a \coth \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \sinh \left (\lambda x \right )-a^{2} f \left (x \right ) \sinh \left (\lambda x \right )^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y^{\prime } = f \left (x \right ) y^{2}+a -a^{2} f \left (x \right ) \ln \left (x \right )^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \sin \left (\lambda x \right )+a^{2} f \left (x \right ) \sin \left (\lambda x \right )^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \cos \left (\lambda x \right )+a^{2} f \left (x \right ) \cos \left (\lambda x \right )^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a \tan \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a \cot \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-f \left (x \right ) g \left (x \right ) y+g^{\prime }\left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} f \left (x \right )^{2} y^{\prime }-f^{\prime }\left (x \right ) y^{2}+g \left (x \right ) \left (y-f \left (x \right )\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+a^{2} f \left (a x +b \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+\frac {f \left (\frac {a x +b}{c x +d}\right )}{\left (c x +d \right )^{4}}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } x^{2} = x^{4} f \left (x \right ) y^{2}+1
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } x^{2} = x^{4} y^{2}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}+g \left (x \right ) y+h \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{2}+{\mathrm e}^{2 \lambda x} f \left ({\mathrm e}^{\lambda x}\right )-\frac {\lambda ^{2}}{4}
\]
|
✗ |
✗ |
✗ |
|