61.4.16 problem 37

Internal problem ID [12042]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number : 37
Date solved : Sunday, March 30, 2025 at 10:20:56 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} {\mathrm e}^{2 \lambda \,x^{2}} \end{align*}

Maple
ode:=diff(y(x),x) = y(x)^2+2*a*lambda*x*exp(lambda*x^2)-a^2*exp(2*lambda*x^2); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==y[x]^2+2*a*\[Lambda]*x*Exp[\[Lambda]*x^2]-a^2*Exp[2*\[Lambda]*x^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(a**2*exp(2*lambda_*x**2) - 2*a*lambda_*x*exp(lambda_*x**2) - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE a**2*exp(2*lambda_*x**2) - 2*a*lambda_*x*exp(lambda_*x**2) - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method