60.10.7 problem 1919

Internal problem ID [11842]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 9, system of higher order odes
Problem number : 1919
Date solved : Sunday, March 30, 2025 at 09:18:21 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )+y \left (t \right )-x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )\\ \frac {d}{d t}y \left (t \right )&=-x \left (t \right )+y \left (t \right )-y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right ) \end{align*}

Maple
ode:=[diff(x(t),t) = x(t)+y(t)-x(t)*(x(t)^2+y(t)^2), diff(y(t),t) = -x(t)+y(t)-y(t)*(x(t)^2+y(t)^2)]; 
dsolve(ode);
 
\[ \text {No solution found} \]
Mathematica
ode={D[x[t],t]==x[t]+y[t]-x[t]*(x[t]^2+y[t]^2),D[y[t],t]==-x[t]+y[t]-y[t]*(x[t]^2+y[t]^2)}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq((x(t)**2 + y(t)**2)*x(t) - x(t) - y(t) + Derivative(x(t), t),0),Eq((x(t)**2 + y(t)**2)*y(t) + x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
Timed Out