Internal
problem
ID
[11814]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1890
Date
solved
:
Sunday, March 30, 2025 at 09:15:54 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(diff(x(t),t),t) = (3*cos(a*t+b)^2-1)*c^2*x(t)+3/2*c^2*y(t)*sin(2*a*t*b), diff(diff(y(t),t),t) = (3*sin(a*t+b)^2-1)*c^2*y(t)+3/2*c^2*x(t)*sin(2*a*t*b)]; dsolve(ode);
ode={D[x[t],{t,2}]==(3*Cos[a*t+b]^2-1)*c^2*x[t]+3/2*c^2*y[t]*Sin[2*(a*t*b)],D[y[t],{t,2}]==(3*Sin[a*t+b]^2-1)*c^2*y[t]+3/2*c^2*x[t]*Sin[2*(a*t*b)]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") a = symbols("a") b = symbols("b") c = symbols("c") x = Function("x") y = Function("y") ode=[Eq(-c**2*(3*cos(a*t + b)**2 - 1)*x(t) - 3*c**2*y(t)*sin(2*a*b*t)/2 + Derivative(x(t), (t, 2)),0),Eq(-c**2*(3*sin(a*t + b)**2 - 1)*y(t) - 3*c**2*x(t)*sin(2*a*b*t)/2 + Derivative(y(t), (t, 2)),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
NotImplementedError :