Internal
problem
ID
[11849]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
9,
system
of
higher
order
odes
Problem
number
:
1928
Date
solved
:
Sunday, March 30, 2025 at 09:18:28 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(diff(x(t),t),t) = k*x(t)/(x(t)^2+y(t)^2)^(3/2), diff(diff(y(t),t),t) = k*y(t)/(x(t)^2+y(t)^2)^(3/2)]; dsolve(ode);
ode={D[x[t],{t,2}]==k*x[t]/(x[t]^2+y[t]^2)^(3/2),D[y[t],{t,2}]==k*y[t]/(x[t]^2+y[t]^2)^(3/2)}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") k = symbols("k") x = Function("x") y = Function("y") ode=[Eq(-k*x(t)/(x(t)**2 + y(t)**2)**(3/2) + Derivative(x(t), (t, 2)),0),Eq(-k*y(t)/(x(t)**2 + y(t)**2)**(3/2) + Derivative(y(t), (t, 2)),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
NotImplementedError :