5.8.2 Problems 101 to 200

Table 5.169: Problems not solved by any CAS

#

ODE

Mathematica

Maple

Sympy

8249

\[ {} y^{\prime \prime }+5 x y^{\prime }+y \sqrt {x} = 0 \]

8507

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8508

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8731

\[ {} y^{\prime } = \sqrt {1-x^{2}-y^{2}} \]

8775

\[ {} y y^{\prime \prime } = x \]

8778

\[ {} 3 y y^{\prime \prime } = \sin \left (x \right ) \]

8847

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

8855

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

8857

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

8882

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

8921

\[ {} {y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

8956

\[ {} \frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

8984

\[ {} y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \]

9013

\[ {} y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \]

9093

\[ {} {y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \]

10061

\[ {} y^{\prime }-a \left (x^{n}-x \right ) y^{3}-y^{2} = 0 \]

10062

\[ {} y^{\prime }-\left (a \,x^{n}+b x \right ) y^{3}-c y^{2} = 0 \]

10063

\[ {} y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right ) = 0 \]

10068

\[ {} y^{\prime }-f \left (x \right ) y^{n}-g \left (x \right ) y-h \left (x \right ) = 0 \]

10069

\[ {} y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b} = 0 \]

10087

\[ {} y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

10092

\[ {} y^{\prime }+f \left (x \right ) \cos \left (a y\right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) = 0 \]

10095

\[ {} y^{\prime }-a \left (1+\tan \left (y\right )^{2}\right )+\tan \left (y\right ) \tan \left (x \right ) = 0 \]

10132

\[ {} x y^{\prime }-\sin \left (x -y\right ) = 0 \]

10213

\[ {} y y^{\prime }+x^{3}+y = 0 \]

10215

\[ {} y y^{\prime }+a y+\frac {\left (a^{2}-1\right ) x}{4}+b \,x^{n} = 0 \]

10216

\[ {} y y^{\prime }+a y+b \,{\mathrm e}^{x}-2 a = 0 \]

10243

\[ {} x y y^{\prime }-y^{2}+x y+x^{3}-2 x^{2} = 0 \]

10246

\[ {} x \left (a +y\right ) y^{\prime }+b y+c x = 0 \]

10259

\[ {} \left (B x y+A \,x^{2}+a x +b y+c \right ) y^{\prime }-B g \left (x \right )^{2}+A x y+\alpha x +\beta y+\gamma = 0 \]

10262

\[ {} \left (x^{2} y-1\right ) y^{\prime }+8 x y^{2}-8 = 0 \]

10274

\[ {} \left (x^{n \left (n +1\right )} y-1\right ) y^{\prime }+2 \left (n +1\right )^{2} x^{n -1} \left (x^{n^{2}} y^{2}-1\right ) = 0 \]

10347

\[ {} \left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) = 0 \]

10433

\[ {} \left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]

10462

\[ {} \left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0 \]

10481

\[ {} \left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0 \]

10483

\[ {} x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-x y = 0 \]

10504

\[ {} \left (\operatorname {b2} y+\operatorname {a2} x +\operatorname {c2} \right )^{2} {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {b0} y+\operatorname {a0} +\operatorname {c0} = 0 \]

10507

\[ {} x^{2} \left (x y^{2}-1\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (y-x \right ) y^{\prime }-y^{2} \left (x^{2} y-1\right ) = 0 \]

10511

\[ {} x^{2} \left (x^{2} y^{4}-1\right ) {y^{\prime }}^{2}+2 x^{3} y^{3} \left (y^{2}-x^{2}\right ) y^{\prime }-y^{2} \left (x^{4} y^{2}-1\right ) = 0 \]

10532

\[ {} {y^{\prime }}^{2}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+x^{3} y^{2}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

10833

\[ {} y^{\prime } = -\frac {1}{-\left (y^{3}\right )^{{2}/{3}} x -\textit {\_F1} \left (y^{3}-3 \ln \left (x \right )\right ) \left (y^{3}\right )^{{1}/{3}} x} \]

10881

\[ {} y^{\prime } = -\frac {i \left (32 i x +64+64 y^{4}+32 x^{2} y^{2}+4 x^{4}+64 y^{6}+48 x^{2} y^{4}+12 x^{4} y^{2}+x^{6}\right )}{128 y} \]

10890

\[ {} y^{\prime } = -\frac {i \left (i x +1+x^{4}+2 x^{2} y^{2}+y^{4}+x^{6}+3 x^{4} y^{2}+3 x^{2} y^{4}+y^{6}\right )}{y} \]

11011

\[ {} y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0 \]

11015

\[ {} y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0 \]

11029

\[ {} y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y = 0 \]

11139

\[ {} x^{2} y^{\prime \prime }+a y^{\prime }-x y = 0 \]

11187

\[ {} x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+f \left (x \right ) y = 0 \]

11194

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) x y^{\prime }+f \left (x \right ) y = 0 \]

11216

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }+f \left (x \right ) y = 0 \]

11258

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+f \left (x \right ) y = 0 \]

11387

\[ {} y^{\prime \prime } = -\frac {\left (x^{2} \left (\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right )+\left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )+\left (x^{2}-\operatorname {a3} \right ) \left (x^{2}-\operatorname {a1} \right )\right )-\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )\right ) y^{\prime }}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )}-\frac {\left (A \,x^{2}+B \right ) y}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )} \]

11419

\[ {} y^{\prime \prime } = -\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \]

11432

\[ {} y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0 \]

11433

\[ {} y^{\prime \prime \prime }+2 f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0 \]

11451

\[ {} 2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0 \]

11456

\[ {} x^{2} y^{\prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }-y = 0 \]

11480

\[ {} x^{3} y^{\prime \prime \prime }+3 \left (1-a \right ) x^{2} y^{\prime \prime }+\left (4 b^{2} c^{2} x^{2 c +1}+1-4 \nu ^{2} c^{2}+3 a \left (a -1\right ) x \right ) y^{\prime }+\left (4 b^{2} c^{2} \left (c -a \right ) x^{2 c}+a \left (4 \nu ^{2} c^{2}-a^{2}\right )\right ) y = 0 \]

11504

\[ {} y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y = 0 \]

11505

\[ {} y^{\prime \prime \prime \prime }+\left (a \,x^{2}+\lambda b +c \right ) y^{\prime \prime }+\left (a \,x^{2}+\beta \lambda +\gamma \right ) y = 0 \]

11541

\[ {} y^{\left (5\right )}-a x y-b = 0 \]

11546

\[ {} x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime } = 0 \]

11550

\[ {} \left (x -a \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y = 0 \]

11553

\[ {} y^{\prime \prime }-6 y^{2}-x = 0 \]

11555

\[ {} y^{\prime \prime }+a y^{2}+b x +c = 0 \]

11556

\[ {} y^{\prime \prime }-2 y^{3}-x y+a = 0 \]

11558

\[ {} y^{\prime \prime }-2 a^{2} y^{3}+2 a b x y-b = 0 \]

11559

\[ {} y^{\prime \prime }+d +b x y+c y+a y^{3} = 0 \]

11561

\[ {} y^{\prime \prime }+a \,x^{r} y^{2} = 0 \]

11565

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y} = 0 \]

11566

\[ {} y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right ) = 0 \]

11568

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right ) = 0 \]

11569

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right ) = 0 \]

11571

\[ {} y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y = 0 \]

11572

\[ {} y^{\prime \prime }-7 y^{\prime }-y^{{3}/{2}}+12 y = 0 \]

11575

\[ {} y^{\prime \prime }-\frac {\left (3 n +4\right ) y^{\prime }}{n}-\frac {2 \left (n +1\right ) \left (n +2\right ) y \left (y^{\frac {n}{n +1}}-1\right )}{n^{2}} = 0 \]

11576

\[ {} y^{\prime \prime }+a y^{\prime }+b y^{n}+\frac {\left (a^{2}-1\right ) y}{4} = 0 \]

11577

\[ {} y^{\prime \prime }+a y^{\prime }+b \,x^{v} y^{n} = 0 \]

11578

\[ {} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a = 0 \]

11579

\[ {} y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right ) = 0 \]

11583

\[ {} y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+f \left (x \right ) y^{2}+y \left (f^{\prime }\left (x \right )+2 f \left (x \right )^{2}\right ) = 0 \]

11590

\[ {} y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{\prime }+c y = 0 \]

11592

\[ {} y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right ) = 0 \]

11596

\[ {} y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r} = 0 \]

11606

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y^{n} = 0 \]

11607

\[ {} x y^{\prime \prime }+2 y^{\prime }+a \,x^{v} y^{n} = 0 \]

11608

\[ {} x y^{\prime \prime }+2 y^{\prime }+x \,{\mathrm e}^{y} = 0 \]

11609

\[ {} x y^{\prime \prime }+a y^{\prime }+b x \,{\mathrm e}^{y} = 0 \]

11610

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y} = 0 \]

11615

\[ {} x^{2} y^{\prime \prime } = a \left (y^{n}-y\right ) \]

11616

\[ {} x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0 \]

11619

\[ {} x^{2} y^{\prime \prime }+a y {y^{\prime }}^{2}+b x = 0 \]

11622

\[ {} 4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \]

11626

\[ {} 2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 x y\right ) y^{\prime }+b +x y \left (a +3 x y-2 x^{2} y^{2}\right ) = 0 \]

11627

\[ {} 2 \left (-x^{k}+4 x^{3}\right ) \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )-\left (k \,x^{k -1}-12 x^{2}\right ) \left (3 y^{\prime }+y^{2}\right )+a x y+b = 0 \]

11628

\[ {} x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \]

11632

\[ {} \sqrt {x}\, y^{\prime \prime }-y^{{3}/{2}} = 0 \]

11635

\[ {} y y^{\prime \prime }-a x = 0 \]

11636

\[ {} y y^{\prime \prime }-a \,x^{2} = 0 \]