61.21.3 problem 3

Internal problem ID [12235]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number : 3
Date solved : Monday, March 31, 2025 at 04:40:13 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+\frac {f \left (\frac {a x +b}{c x +d}\right )}{\left (c x +d \right )^{4}} \end{align*}

Maple
ode:=diff(y(x),x) = y(x)^2+1/(c*x+d)^4*f((a*x+b)/(c*x+d)); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==y[x]^2+1/(c*x+d)^4*f[(a*x+b)/(c*x+d)]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
d = symbols("d") 
y = Function("y") 
f = Function("f") 
ode = Eq(-y(x)**2 + Derivative(y(x), x) - f((a*x + b)/(c*x + d))/(c*x + d)**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out