Internal
problem
ID
[11852]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
9,
system
of
higher
order
odes
Problem
number
:
1932
Date
solved
:
Sunday, March 30, 2025 at 09:18:31 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)*(y(t)-z(t)), diff(y(t),t) = y(t)*(z(t)-x(t)), diff(z(t),t) = z(t)*(x(t)-y(t))]; dsolve(ode);
ode={D[x[t],t]==x[t]*(y[t]-z[t]),D[y[t],t]==y[t]*(z[t]-x[t]),D[z[t],t]==z[t]*(x[t]-y[t])}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq((-y(t) + z(t))*x(t) + Derivative(x(t), t),0),Eq((x(t) - z(t))*y(t) + Derivative(y(t), t),0),Eq((-x(t) + y(t))*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
KeyError : F2_