61.7.8 problem 8

Internal problem ID [12080]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number : 8
Date solved : Sunday, March 30, 2025 at 10:39:11 PM
CAS classification : [_Riccati]

\begin{align*} x^{2} y^{\prime }&=x^{2} y^{2}+a \left (b \ln \left (x \right )+c \right )^{n}+\frac {1}{4} \end{align*}

Maple
ode:=x^2*diff(y(x),x) = x^2*y(x)^2+a*(b*ln(x)+c)^n+1/4; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=x^2*D[y[x],x]==x^2*y[x]^2+a*(b*Log[x]+c)^n+1/4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*(b*log(x) + c)**n - x**2*y(x)**2 + x**2*Derivative(y(x), x) - 1/4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (a*(b*log(x) + c)**n + x**2*y(x)**2 + 1/4)/x**2 cannot be solved by the factorable group method