Internal
problem
ID
[11960]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
33
Date
solved
:
Sunday, March 30, 2025 at 09:29:06 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*x^n*y(x)^2+b*x^m*y(x)+c*k*x^(k-1)-b*c*x^(m+k)-a*c^2*x^(n+2*k); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*x^n*y[x]^2+b*x^m*y[x]+c*k*x^(k-1)-b*c*x^(m+k)-a*c^2*x^(n+2*k); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") k = symbols("k") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(a*c**2*x**(2*k + n) - a*x**n*y(x)**2 + b*c*x**(k + m) - b*x**m*y(x) - c*k*x**(k - 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out