Internal
problem
ID
[12220]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-1.
Equations
containing
arbitrary
functions
(but
not
containing
their
derivatives).
Problem
number
:
30
Date
solved
:
Monday, March 31, 2025 at 04:38:14 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = f(x)*y(x)^2-a^2*f(x)+a*lambda*sin(lambda*x)+a^2*f(x)*sin(lambda*x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==f[x]*y[x]^2-a^2*f[x]+a*\[Lambda]*Sin[\[Lambda]*x]+a^2*f[x]*Sin[\[Lambda]*x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") y = Function("y") f = Function("f") ode = Eq(-a**2*f(x)*sin(lambda_*x)**2 + a**2*f(x) - a*lambda_*sin(lambda_*x) - f(x)*y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out