Internal
problem
ID
[11766]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
7,
non-linear
third
and
higher
order
Problem
number
:
1841
Date
solved
:
Sunday, March 30, 2025 at 09:14:36 PM
CAS
classification
:
[[_3rd_order, _exact, _nonlinear]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)+x*diff(diff(y(x),x),x)+(2*x*y(x)-1)*diff(y(x),x)+y(x)^2-f(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-f[x] + y[x]^2 + (-1 + 2*x*y[x])*D[y[x],x] + x*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 3)) + x*Derivative(y(x), (x, 2)) + (2*x*y(x) - 1)*Derivative(y(x), x) - f(x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**2*Derivative(y(x), (x, 3)) - x*Derivative(y(x), (x, 2)) + f(x) - y(x)**2)/(2*x*y(x) - 1) cannot be solved by the factorable group method