Internal
problem
ID
[12206]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-1.
Equations
containing
arbitrary
functions
(but
not
containing
their
derivatives).
Problem
number
:
16
Date
solved
:
Monday, March 31, 2025 at 04:33:27 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = f(x)*y(x)^2-f(x)*(exp(lambda*x)*a+b)*y(x)+a*lambda*exp(lambda*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==f[x]*y[x]^2-f[x]*(a*Exp[\[Lambda]*x]+b)*y[x]+a*\[Lambda]*Exp[\[Lambda]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") y = Function("y") f = Function("f") ode = Eq(-a*lambda_*exp(lambda_*x) + (a*exp(lambda_*x) + b)*f(x)*y(x) - f(x)*y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*lambda_*exp(lambda_*x) + a*f(x)*y(x)*exp(lambda_*x) + b*f(x)*y(x) - f(x)*y(x)**2 + Derivative(y(x), x) cannot be solved by the factorable group method