Internal
problem
ID
[12129]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-3.
Equations
with
tangent.
Problem
number
:
34
Date
solved
:
Sunday, March 30, 2025 at 11:01:27 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*tan(lambda*x)^n*y(x)^2-a*b^2*tan(lambda*x)^(n+2)+b*lambda*tan(lambda*x)^2+b*lambda; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Tan[\[Lambda]*x]^n*y[x]^2-a*b^2*Tan[\[Lambda]*x]^(n+2)+b*\[Lambda]*Tan[\[Lambda]*x]^2+b*\[Lambda]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(a*b**2*tan(lambda_*x)**(n + 2) - a*y(x)**2*tan(lambda_*x)**n - b*lambda_*tan(lambda_*x)**2 - b*lambda_ + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out