61.4.7 problem 28

Internal problem ID [12033]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number : 28
Date solved : Sunday, March 30, 2025 at 10:19:54 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \lambda \,{\mathrm e}^{\lambda x}-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \end{align*}

Maple
ode:=diff(y(x),x) = a*x^n*y(x)^2+b*lambda*exp(lambda*x)-a*b^2*x^n*exp(2*lambda*x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==a*x^n*y[x]^2+b*\[Lambda]*Exp[\[Lambda]*x]-a*b^2*x^n*Exp[2*\[Lambda]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
lambda_ = symbols("lambda_") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a*b**2*x**n*exp(2*lambda_*x) - a*x**n*y(x)**2 - b*lambda_*exp(lambda_*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE a*b**2*x**n*exp(2*lambda_*x) - a*x**n*y(x)**2 - b*lambda_*exp(lambda_*x) + Derivative(y(x), x) cannot be solved by the lie group method