5.3.52 Problems 5101 to 5200

Table 5.137: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

17096

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]

17097

\[ {} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x^{2}+x y = 2 \ln \left (x \right ) \]

17098

\[ {} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2 \]

17102

\[ {} x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

17103

\[ {} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

17104

\[ {} x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

17105

\[ {} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

17106

\[ {} x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

17107

\[ {} x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

17108

\[ {} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

17112

\[ {} y^{\prime \prime }+y = 0 \]

17113

\[ {} y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

17132

\[ {} x y^{\prime \prime }+y \sin \left (x \right ) = x \]

17134

\[ {} y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]

17137

\[ {} y^{\prime \prime }-x y^{\prime }+y = 1 \]

17158

\[ {} \left [x_{1}^{\prime }\left (t \right ) = -2 t x_{1} \left (t \right )^{2}, x_{2}^{\prime }\left (t \right ) = \frac {x_{2} \left (t \right )+t}{t}\right ] \]

17159

\[ {} [x_{1}^{\prime }\left (t \right ) = {\mathrm e}^{t -x_{1} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = 2 \,{\mathrm e}^{x_{1} \left (t \right )}] \]

17163

\[ {} \left [x^{\prime }\left (t \right ) = \frac {t +y \left (t \right )}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{x \left (t \right )+y \left (t \right )}\right ] \]

17164

\[ {} \left [x^{\prime }\left (t \right ) = \frac {t -y \left (t \right )}{-x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{-x \left (t \right )+y \left (t \right )}\right ] \]

17165

\[ {} \left [x^{\prime }\left (t \right ) = \frac {t +y \left (t \right )}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {t +x \left (t \right )}{x \left (t \right )+y \left (t \right )}\right ] \]

17176

\[ {} [x^{\prime \prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) x^{\prime }\left (t \right )+x \left (t \right )] \]

17177

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

17181

\[ {} [x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right ) \cos \left (y \left (t \right )\right ), y^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right ) \sin \left (y \left (t \right )\right )] \]

17182

\[ {} \left [{\mathrm e}^{t} x^{\prime }\left (t \right ) = \frac {1}{y \left (t \right )}, {\mathrm e}^{t} y^{\prime }\left (t \right ) = \frac {1}{x \left (t \right )}\right ] \]

17183

\[ {} \left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ] \]

17233

\[ {} y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

17238

\[ {} y^{\prime } = \frac {\sec \left (x \right )^{2}}{1+y^{3}} \]

17257

\[ {} y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y} \]

17263

\[ {} y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

17301

\[ {} \ln \left (t \right ) y+\left (t -3\right ) y^{\prime } = 2 t \]

17306

\[ {} y+\ln \left (t \right ) y^{\prime } = \cot \left (t \right ) \]

17307

\[ {} y^{\prime } = \frac {t -y}{2 t +5 y} \]

17308

\[ {} y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

17309

\[ {} y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

17310

\[ {} y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

17325

\[ {} 2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

17326

\[ {} 2+3 x^{2}-2 x y+\left (3-x^{2}+6 y^{2}\right ) y^{\prime } = 0 \]

17329

\[ {} y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]

17330

\[ {} {\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

17331

\[ {} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

17332

\[ {} 2 x -2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+{\mathrm e}^{x y} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{x y} x \cos \left (2 x \right )\right ) y^{\prime } = 0 \]

17337

\[ {} 9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0 \]

17339

\[ {} \frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0 \]

17342

\[ {} 2 x y+3 x^{2} y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

17347

\[ {} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

17348

\[ {} 3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

17355

\[ {} x y y^{\prime } = \left (x +y\right )^{2} \]

17356

\[ {} y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

17371

\[ {} y^{\prime }+3 t y = 4-4 t^{2}+y^{2} \]

17382

\[ {} x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

17384

\[ {} y^{\prime }+y-y^{{1}/{4}} = 0 \]

17391

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+\sin \left (t \right ) y \left (t \right )] \]

17461

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+x \left (t \right )^{2}, y^{\prime }\left (t \right ) = y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

17462

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ) x \left (t \right )^{2}-3 x \left (t \right )^{2}-4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) y \left (t \right )^{2}+6 x \left (t \right ) y \left (t \right )] \]

17464

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+2 x \left (t \right ) y \left (t \right )] \]

17465

\[ {} [x^{\prime }\left (t \right ) = 2-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}] \]

17466

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{2}-\frac {y \left (t \right )^{2}}{4}-\frac {3 x \left (t \right ) y \left (t \right )}{4}\right ] \]

17467

\[ {} [x^{\prime }\left (t \right ) = -\left (x \left (t \right )-y \left (t \right )\right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )+2\right )] \]

17468

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ) \left (2-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

17469

\[ {} [x^{\prime }\left (t \right ) = \left (x \left (t \right )+2\right ) \left (-x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

17470

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

17471

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {x \left (t \right )^{3}}{5}-\frac {y \left (t \right )}{5}\right ] \]

17473

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\frac {3}{4}-y \left (t \right )-\frac {x \left (t \right )}{2}\right )\right ] \]

17475

\[ {} y^{\prime \prime }+y^{\prime }+y+y^{3} = 0 \]

17476

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

17478

\[ {} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y = 0 \]

17486

\[ {} t y^{\prime \prime }+3 y = t \]

17487

\[ {} \left (t -1\right ) y^{\prime \prime }-3 t y^{\prime }+4 y = \sin \left (t \right ) \]

17488

\[ {} t \left (-4+t \right ) y^{\prime \prime }+3 t y^{\prime }+4 y = 2 \]

17489

\[ {} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 \ln \left (t \right ) y = 0 \]

17490

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }+y \ln \left (x \right ) = 0 \]

17491

\[ {} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y = 0 \]

17492

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\frac {\alpha \left (\alpha +1\right ) \mu ^{2} y}{-x^{2}+1} = 0 \]

17493

\[ {} y^{\prime \prime }-\frac {t}{y} = \frac {1}{\pi } \]

17495

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

17498

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

17499

\[ {} \left (1-x \cot \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17507

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17510

\[ {} x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

17511

\[ {} y^{\prime \prime }+a \left (x y^{\prime }+y\right ) = 0 \]

17585

\[ {} y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (2 t \right ) \]

17614

\[ {} y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17615

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17625

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

17628

\[ {} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

17629

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

17630

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

17631

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

17632

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = g \left (x \right ) \]

17633

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

17639

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }-y = {\mathrm e}^{2 t} t^{2} \]

17640

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

17679

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]

17682

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]

17687

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17723

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t \]

17724

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

17725

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

17726

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

17727

\[ {} \left (-4+x \right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]