Internal
problem
ID
[17462]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
3.
Systems
of
two
first
order
equations.
Section
3.6
(A
brief
introduction
to
nonlinear
systems).
Problems
at
page
195
Problem
number
:
11
Date
solved
:
Monday, March 31, 2025 at 04:14:21 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 2*x(t)^2*y(t)-3*x(t)^2-4*y(t), diff(y(t),t) = -2*x(t)*y(t)^2+6*x(t)*y(t)]; dsolve(ode);
ode={D[x[t],t]==2*x[t]^2*y[t]-3*x[t]^2-4*y[t],D[y[t],t]==-2*x[t]*y[t]^2+6*x[t]*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t)**2*y(t) + 3*x(t)**2 + 4*y(t) + Derivative(x(t), t),0),Eq(2*x(t)*y(t)**2 - 6*x(t)*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)