Internal
problem
ID
[17487]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.2
(Theory
of
second
order
linear
homogeneous
equations).
Problems
at
page
226
Problem
number
:
2
Date
solved
:
Monday, March 31, 2025 at 04:15:05 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=(t-1)*diff(diff(y(t),t),t)-3*t*diff(y(t),t)+4*y(t) = sin(t); ic:=y(-2) = 2, D(y)(-2) = 1; dsolve([ode,ic],y(t), singsol=all);
ode=(t-1)*D[y[t],{t,2}]-3*t*D[y[t],t]+4*y[t]==Sin[t]; ic={y[-2]==2,Derivative[1][y][-2]==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*t*Derivative(y(t), t) + (t - 1)*Derivative(y(t), (t, 2)) + 4*y(t) - sin(t),0) ics = {y(-2): 2, Subs(Derivative(y(t), t), t, -2): 1} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - (t*Derivative(y(t), (t, 2)) + 4*y(t) - sin(t) - Derivative(y(t), (t, 2)))/(3*t) cannot be solved by the factorable group method