Internal
problem
ID
[17134]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
18.1
Integration
of
differential
equation
in
series.
Power
series.
Exercises
page
171
Problem
number
:
731
Date
solved
:
Monday, March 31, 2025 at 03:42:56 PM
CAS
classification
:
[NONE]
Using series method with expansion around
With initial conditions
Order:=6; ode:=diff(diff(diff(y(x),x),x),x)+x*sin(y(x)) = 0; ic:=y(0) = 1/2*Pi, D(y)(0) = 0, (D@@2)(y)(0) = 0; dsolve([ode,ic],y(x),type='series',x=0);
ode=D[y[x],{x,3}]+x*Sin[y[x]]==0; ic={y[0]==Pi/2,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) - x + y(x)*sin(x),0) ics = {y(pi): 1, Subs(Derivative(y(x), x), x, pi): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=pi,n=6)
Series solution not supported for ode of order > 2