Internal
problem
ID
[17096]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
672
Date
solved
:
Monday, March 31, 2025 at 03:41:28 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)/x-y(x) = 4*exp(x); ic:=y(-infinity) = 0, D(y)(-1) = -1/exp(1); dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+2/x*D[y[x],x]-y[x]==4*Exp[x]; ic={y[-Infinity]==0,Derivative[1][y][-1]==-1/Exp[1]}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x) - 4*exp(x) + Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x)/x,0) ics = {y(-inf): 0, Subs(Derivative(y(x), x), x, -1): -exp(-1)} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(y(x) + 4*exp(x) - Derivative(y(x), (x, 2)))/2 + Derivative(y(x), x) cannot be solved by the factorable group method