Internal
problem
ID
[17183]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
21.
Finding
integrable
combinations.
Exercises
page
219
Problem
number
:
793
Date
solved
:
Monday, March 31, 2025 at 03:44:02 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = cos(x(t))^2*cos(y(t))^2+sin(x(t))^2*cos(y(t))^2, diff(y(t),t) = -1/2*sin(2*x(t))*sin(2*y(t))]; ic:=x(0) = 0y(0) = 0; dsolve([ode,ic]);
ode={D[x[t],t]==Cos[x[t]]^2*Cos[y[t]]^2+Sin[x[t]]^2*Cos[y[t]]^2,D[y[t],t]==-1/2*Sin[2*x[t]]*Sin[2*y[t]]}; ic={x[0]==0,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
{}
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-sin(x(t))**2*cos(y(t))**2 - cos(x(t))**2*cos(y(t))**2 + Derivative(x(t), t),0),Eq(sin(2*x(t))*sin(2*y(t))/2 + Derivative(y(t), t),0)] ics = {x(0): 0, y(0): 0} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out