Internal
problem
ID
[17466]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
3.
Systems
of
two
first
order
equations.
Section
3.6
(A
brief
introduction
to
nonlinear
systems).
Problems
at
page
195
Problem
number
:
15
Date
solved
:
Monday, March 31, 2025 at 04:14:25 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)-x(t)^2-x(t)*y(t), diff(y(t),t) = 1/2*y(t)-1/4*y(t)^2-3/4*x(t)*y(t)]; dsolve(ode);
ode={D[x[t],t]==x[t]-x[t]^2-x[t]*y[t],D[y[t],t]==1/2*y[t]-1/4*y[t]^2-3/4*x[t]*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t)**2 + x(t)*y(t) - x(t) + Derivative(x(t), t),0),Eq(3*x(t)*y(t)/4 + y(t)**2/4 - y(t)/2 + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out