75.28.1 problem 787

Internal problem ID [17177]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 21. Finding integrable combinations. Exercises page 219
Problem number : 787
Date solved : Monday, March 31, 2025 at 03:43:56 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )^{2}+y \left (t \right )^{2}\\ \frac {d}{d t}y \left (t \right )&=2 x \left (t \right ) y \left (t \right ) \end{align*}

Maple. Time used: 0.568 (sec). Leaf size: 65
ode:=[diff(x(t),t) = x(t)^2+y(t)^2, diff(y(t),t) = 2*x(t)*y(t)]; 
dsolve(ode);
 
\begin{align*} \left [\{y \left (t \right ) = 0\}, \left \{x \left (t \right ) &= \frac {1}{-t +c_1}\right \}\right ] \\ \left [\left \{y \left (t \right ) &= \frac {4 c_1}{c_1^{2} c_2^{2}+2 c_1^{2} c_2 t +c_1^{2} t^{2}-16}\right \}, \left \{x \left (t \right ) = \frac {\frac {d}{d t}y \left (t \right )}{2 y \left (t \right )}\right \}\right ] \\ \end{align*}
Mathematica. Time used: 0.481 (sec). Leaf size: 518
ode={D[x[t],t]==x[t]^2+y[t]^2,D[y[t],t]==-2*x[t]*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {\sqrt {3 c_1-\text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [-\frac {2 t}{\sqrt {3}}+c_2\right ]{}^3}}{\sqrt {3} \sqrt {\text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [-\frac {2 t}{\sqrt {3}}+c_2\right ]}} \\ y(t)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [-\frac {2 t}{\sqrt {3}}+c_2\right ] \\ x(t)\to -\frac {\sqrt {3 c_1-\text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [\frac {2 t}{\sqrt {3}}+c_2\right ]{}^3}}{\sqrt {3} \sqrt {\text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [\frac {2 t}{\sqrt {3}}+c_2\right ]}} \\ y(t)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{3 c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {\text {$\#$1}^3}{3 c_1}\right )}{\sqrt {-\text {$\#$1}^3+3 c_1}}\&\right ]\left [\frac {2 t}{\sqrt {3}}+c_2\right ] \\ \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t)**2 - y(t)**2 + Derivative(x(t), t),0),Eq(-2*x(t)*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)