76.10.17 problem 17

Internal problem ID [17468]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.6 (A brief introduction to nonlinear systems). Problems at page 195
Problem number : 17
Date solved : Monday, March 31, 2025 at 04:14:27 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=y \left (t \right ) \left (2-x \left (t \right )-y \left (t \right )\right )\\ \frac {d}{d t}y \left (t \right )&=-x \left (t \right )-y \left (t \right )-2 x \left (t \right ) y \left (t \right ) \end{align*}

Maple
ode:=[diff(x(t),t) = y(t)*(2-x(t)-y(t)), diff(y(t),t) = -x(t)-y(t)-2*x(t)*y(t)]; 
dsolve(ode);
 
\[ \text {No solution found} \]
Mathematica
ode={D[x[t],t]==y[t]*(2-x[t]-y[t]),D[y[t],t]==-x[t]-y[t]-2*x[t]*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq((x(t) + y(t) - 2)*y(t) + Derivative(x(t), t),0),Eq(2*x(t)*y(t) + x(t) + y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
Timed Out