76.3.9 problem 9

Internal problem ID [17309]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.4 (Differences between linear and nonlinear equations). Problems at page 79
Problem number : 9
Date solved : Monday, March 31, 2025 at 03:51:47 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} y^{\prime }&=\frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \end{align*}

Maple
ode:=diff(y(t),t) = ln(t*y(t))/(1-t^2+y(t)^2); 
dsolve(ode,y(t), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[t],t]==Log[t*y[t]]/(1-t^2+y[t]^2); 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(Derivative(y(t), t) - log(t*y(t))/(-t**2 + y(t)**2 + 1),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(t), t) - log(t*y(t))/(-t**2 + y(t)**2 + 1) cannot be solved by the lie group method