Internal
problem
ID
[17630]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.7
(Variation
of
parameters).
Problems
at
page
280
Problem
number
:
24
Date
solved
:
Monday, March 31, 2025 at 04:23:04 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(1-t)*diff(diff(y(t),t),t)+t*diff(y(t),t)-y(t) = 2*(t-1)^2*exp(-t); dsolve(ode,y(t), singsol=all);
ode=(1-t)*D[y[t],{t,2}]+t*D[y[t],t]-y[t]==2*(t-1)^2*Exp[-t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*Derivative(y(t), t) + (1 - t)*Derivative(y(t), (t, 2)) - 2*(t - 1)**2*exp(-t) - y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - (2*t*(t - 2) + t*exp(t)*Derivative(y(t), (t, 2)) + (y(t) - Derivative(y(t), (t, 2)))*exp(t) + 2)*exp(-t)/t cannot be solved by the factorable group method