76.1.29 problem 29

Internal problem ID [17257]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.1 (Separable equations). Problems at page 44
Problem number : 29
Date solved : Monday, March 31, 2025 at 03:47:29 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {3 x^{2}+1}{12 y^{2}-12 y} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \end{align*}

Maple. Time used: 0.178 (sec). Leaf size: 72
ode:=diff(y(x),x) = (3*x^2+1)/(12*y(x)^2-12*y(x)); 
ic:=y(0) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {\left (9+x^{3}+x +\sqrt {x^{6}+2 x^{4}+18 x^{3}+x^{2}+18 x +80}\right )^{{1}/{3}}}{2}+\frac {1}{2 \left (9+x^{3}+x +\sqrt {x^{6}+2 x^{4}+18 x^{3}+x^{2}+18 x +80}\right )^{{1}/{3}}}+\frac {1}{2} \]
Mathematica. Time used: 4.034 (sec). Leaf size: 81
ode=D[y[x],x]==(1+3*x^2)/(12*y[x]^2-12*y[x]); 
ic={y[0]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} \left (\sqrt [3]{x^3+\sqrt {x^6+2 x^4+18 x^3+x^2+18 x+80}+x+9}+\frac {1}{\sqrt [3]{x^3+\sqrt {x^6+2 x^4+18 x^3+x^2+18 x+80}+x+9}}+1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-3*x**2 - 1)/(12*y(x)**2 - 12*y(x)) + Derivative(y(x), x),0) 
ics = {y(0): 2} 
dsolve(ode,func=y(x),ics=ics)
 
ZeroDivisionError : polynomial division