Internal
problem
ID
[17132]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
18.1
Integration
of
differential
equation
in
series.
Power
series.
Exercises
page
171
Problem
number
:
729
Date
solved
:
Monday, March 31, 2025 at 03:42:46 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=x*diff(diff(y(x),x),x)+sin(x)*y(x) = x; ic:=y(Pi) = 1, D(y)(Pi) = 0; dsolve([ode,ic],y(x),type='series',x=Pi);
ode=x*D[y[x],{x,2}]+Sin[x]*y[x]==x; ic={y[Pi]==1,Derivative[1][y][Pi]==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,Pi,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) - x + y(x)*sin(x),0) ics = {y(pi): 1, Subs(Derivative(y(x), x), x, pi): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=pi,n=6)
ValueError : ODE x*Derivative(y(x), (x, 2)) - x + y(x)*sin(x) does not match hint 2nd_power_series_regular