Internal
problem
ID
[17097]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
673
Date
solved
:
Monday, March 31, 2025 at 03:41:33 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^3*(ln(x)-1)*diff(diff(y(x),x),x)-x^2*diff(y(x),x)+x*y(x) = 2*ln(x); ic:=y(infinity) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=x^3*(Log[x]-1)*D[y[x],{x,2}]-x^2*D[y[x],x]+x*y[x]==2*Log[x]; ic={y[Infinity]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*(log(x) - 1)*Derivative(y(x), (x, 2)) - x**2*Derivative(y(x), x) + x*y(x) - 2*log(x),0) ics = {y(oo): 0} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3*(log(x) - 1)*Derivative(y(x), (x, 2)) + x*y(x) - 2*log(x))/x**2 cannot be solved by the factorable group method