Internal
problem
ID
[17476]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.1
(Definitions
and
examples).
Problems
at
page
214
Problem
number
:
3
Date
solved
:
Monday, March 31, 2025 at 04:14:40 PM
CAS
classification
:
[_Gegenbauer]
ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+alpha*(alpha+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+a*(1+a)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") y = Function("y") ode = Eq(Alpha*(Alpha + 1)*y(x) - 2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False