Internal
problem
ID
[17631]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.7
(Variation
of
parameters).
Problems
at
page
280
Problem
number
:
25
Date
solved
:
Monday, March 31, 2025 at 04:23:06 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(x^2-1/4)*y(x) = 3*x^(3/2)*sin(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==3*x^(3/2)*Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x**(3/2)*sin(x) + x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (x**2 - 1/4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -3*sqrt(x)*sin(x) + x*y(x) + x*Derivative(y(x), (x, 2)) + Derivative(y(x), x) - y(x)/(4*x) cannot be solved by the factorable group method