5.3.4 Problems 301 to 400

Table 5.41: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

2354

\[ {} y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2356

\[ {} y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2357

\[ {} y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2359

\[ {} y^{\prime } = t^{2}+y^{2} \]

2410

\[ {} y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \]

2411

\[ {} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

2442

\[ {} t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2443

\[ {} \sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \]

2444

\[ {} \left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \]

2445

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \]

2446

\[ {} t^{3} y^{\prime \prime }+\sin \left (t^{3}\right ) y^{\prime }+t y = 0 \]

2453

\[ {} t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

2458

\[ {} t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

2464

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

2466

\[ {} 2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y = 0 \]

2467

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t +1\right ) y = 0 \]

2478

\[ {} \frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

2510

\[ {} 2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

2511

\[ {} 1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

2512

\[ {} \sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

2515

\[ {} 2 t \cos \left (y\right )+3 t^{2} y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2516

\[ {} 3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2517

\[ {} 2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]

2520

\[ {} y^{\prime } = t^{2}+y^{2} \]

2521

\[ {} y^{\prime } = {\mathrm e}^{t}+y^{2} \]

2522

\[ {} y^{\prime } = y^{2}+\cos \left (t \right )^{2} \]

2523

\[ {} y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2524

\[ {} y^{\prime } = t +y^{2} \]

2525

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2526

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2527

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2528

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2529

\[ {} y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2531

\[ {} y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2532

\[ {} y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2534

\[ {} y^{\prime } = t^{2}+y^{2} \]

2536

\[ {} y^{\prime } = t y^{a} \]

2538

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+2 t \]

2539

\[ {} y^{\prime } = 1-t +y^{2} \]

2540

\[ {} y^{\prime } = \frac {t^{2}+y^{2}}{1+t +y^{2}} \]

2592

\[ {} y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y = t +1 \]

2593

\[ {} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

2622

\[ {} y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = {\mathrm e}^{t} \]

2639

\[ {} t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2640

\[ {} \sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \]

2641

\[ {} \left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \]

2642

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \]

2643

\[ {} t^{3} y^{\prime \prime }+\sin \left (t^{2}\right ) y^{\prime }+t y = 0 \]

2655

\[ {} t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

2659

\[ {} t^{2} y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

2661

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

2663

\[ {} t \left (1-t \right ) y^{\prime \prime }+\left (\gamma -\left (\alpha +\beta +1\right ) t \right ) y^{\prime }-\alpha \beta y = 0 \]

2664

\[ {} 2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y = 0 \]

2665

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t +1\right ) y = 0 \]

2670

\[ {} t^{2} y^{\prime \prime }+t p \left (t \right ) y^{\prime }+q \left (t \right ) y = 0 \]

2690

\[ {} y^{\prime \prime }+2 y^{\prime }+y = \left \{\begin {array}{cc} \sin \left (2 t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]

2691

\[ {} y^{\prime \prime }+y^{\prime }+7 y = \left \{\begin {array}{cc} t & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]

2693

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]

2786

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )+2 x_{3} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right )] \]

2789

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-2 y \left (t \right )^{2}-3 x \left (t \right ) y \left (t \right )] \]

2790

\[ {} [x^{\prime }\left (t \right ) = -b x \left (t \right ) y \left (t \right )+m, y^{\prime }\left (t \right ) = b x \left (t \right ) y \left (t \right )-g y \left (t \right )] \]

2791

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right )-b x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -c y \left (t \right )+d x \left (t \right ) y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )+x \left (t \right )^{2}+y \left (t \right )^{2}] \]

2792

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-x \left (t \right ) y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -y \left (t \right )-y \left (t \right ) x \left (t \right )^{2}, z^{\prime }\left (t \right ) = 1-z \left (t \right )+x \left (t \right )^{2}] \]

2793

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )^{2}-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right ) \sin \left (\pi y \left (t \right )\right )] \]

2794

\[ {} [x^{\prime }\left (t \right ) = \cos \left (y \left (t \right )\right ), y^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right )-1] \]

2795

\[ {} [x^{\prime }\left (t \right ) = -1-y \left (t \right )-{\mathrm e}^{x \left (t \right )}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ) \left ({\mathrm e}^{x \left (t \right )}-1\right ), z^{\prime }\left (t \right ) = x \left (t \right )+\sin \left (z \left (t \right )\right )] \]

2796

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right ), z^{\prime }\left (t \right ) = {\mathrm e}^{z \left (t \right )}-x \left (t \right )] \]

2812

\[ {} \left [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -\frac {\left (x_{1} \left (t \right )^{2}+\sqrt {x_{1} \left (t \right )^{2}+4 x_{2} \left (t \right )^{2}}\right ) x_{1} \left (t \right )}{2}\right ] \]

2814

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{3}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-y \left (t \right )^{5}-y \left (t \right ) x \left (t \right )^{4}] \]

2815

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}+1, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )^{2}] \]

2816

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}-1, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

2817

\[ {} [x^{\prime }\left (t \right ) = 6 x \left (t \right )-6 x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )-4 y \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right )] \]

2818

\[ {} [x^{\prime }\left (t \right ) = \tan \left (x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right )+x \left (t \right )^{3}] \]

2819

\[ {} [x^{\prime }\left (t \right ) = {\mathrm e}^{y \left (t \right )}-x \left (t \right ), y^{\prime }\left (t \right ) = {\mathrm e}^{x \left (t \right )}+y \left (t \right )] \]

2821

\[ {} z^{\prime \prime }+z+z^{5} = 0 \]

2822

\[ {} z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1 \]

2823

\[ {} z^{\prime \prime }+\frac {z}{1+z^{2}} = 0 \]

2824

\[ {} z^{\prime \prime }+z-2 z^{3} = 0 \]

2854

\[ {} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

2868

\[ {} x^{2}+3 x y^{\prime } = y^{3}+2 y \]

2876

\[ {} y y^{\prime }+x = 2 y \]

2887

\[ {} {\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime } \]

2893

\[ {} y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

2895

\[ {} x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

2899

\[ {} y^{\prime } = \frac {x +y-1}{x -y-1} \]

2903

\[ {} x +2 y+2 = \left (2 x +y-1\right ) y^{\prime } \]

2904

\[ {} 3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0 \]

2910

\[ {} 3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

2912

\[ {} 2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

2913

\[ {} 2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0 \]

2916

\[ {} a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

2917

\[ {} x \left (6 x y+5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0 \]

2918

\[ {} 3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

2920

\[ {} \cos \left (x \right ) y-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime } \]

2921

\[ {} \frac {2 x y-1}{y}+\frac {\left (3 y+x \right ) y^{\prime }}{y^{2}} = 0 \]

2923

\[ {} 3 y \sin \left (x \right )-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime } = 0 \]

2924

\[ {} x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \]

2926

\[ {} \frac {x y+1}{y}+\frac {\left (2 y-x \right ) y^{\prime }}{y^{2}} = 0 \]

2928

\[ {} y^{2} \csc \left (x \right )^{2}+6 x y-2 = \left (2 \cot \left (x \right ) y-3 x^{2}\right ) y^{\prime } \]

2929

\[ {} \frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \]