Internal
problem
ID
[2786]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
3.
Systems
of
differential
equations.
Section
3.13
(Solving
systems
by
Laplace
transform).
Page
370
Problem
number
:
13
Date
solved
:
Sunday, March 30, 2025 at 12:20:29 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -x__1(t)-x__2(t)+2*x__3(t)+exp(t), diff(x__2(t),t) = x__1(t)+x__2(t)+x__3(t), diff(x__3(t),t) = 2*x__1(t)+x__2(t)+3*x__3(t)]; ic:=x__1(0) = 0x__2(0) = 0x__3(0) = 0; dsolve([ode,ic]);
ode={D[x1[t],t]==-1*x1[t]-1*x2[t]+2*x3[t]+Exp[t],D[x2[t],t]==1*x1[t]+1*x2[t]+1*x3[t],D[x3[t],t]==2*x1[t]+1*x2[t]+3*x3[t]}; ic={x1[0]==0,x2[0]==0,x3[0]==0}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(x__1(t) + x__2(t) - 2*x__3(t) - exp(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) - x__2(t) - x__3(t) + Derivative(x__2(t), t),0),Eq(-2*x__1(t) - x__2(t) - 3*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)
Timed Out