Internal
problem
ID
[2517]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.9.
Exact
equations.
Excercises
page
66
Problem
number
:
10
Date
solved
:
Sunday, March 30, 2025 at 12:07:09 AM
CAS
classification
:
[_exact]
With initial conditions
ode:=y(t)*cos(2*t)*exp(t*y(t))-2*sin(2*t)*exp(t*y(t))+2*t+(t*cos(2*t)*exp(t*y(t))-3)*diff(y(t),t) = 0; ic:=y(0) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=(y[t]*Cos[2*t]*Exp[t*y[t]]-2*Sin[2*t]*Exp[t*y[t]]+2*t)+(t*Cos[2*t]*Exp[t*y[t]]-3)*D[y[t],t]==0; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*t + (t*exp(t*y(t))*cos(2*t) - 3)*Derivative(y(t), t) + y(t)*exp(t*y(t))*cos(2*t) - 2*exp(t*y(t))*sin(2*t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)
Timed Out