Internal
problem
ID
[2528]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.10.
Existence-uniqueness
theorem.
Excercises
page
80
Problem
number
:
10
Date
solved
:
Sunday, March 30, 2025 at 12:08:49 AM
CAS
classification
:
[`y=_G(x,y')`]
With initial conditions
ode:=diff(y(t),t) = y(t)+exp(-y(t))+exp(-t); ic:=y(0) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]==y[t]+Exp[-y[t]]+Exp[-t]; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-y(t) + Derivative(y(t), t) - exp(-y(t)) - exp(-t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE -y(t) + Derivative(y(t), t) - exp(-y(t)) - exp(-t) cannot be solved by the lie group method