5.3.3 Problems 201 to 300

Table 5.39: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

1691

\[ {} y \sin \left (x y\right )+x y^{2} \cos \left (x y\right )+\left (x \sin \left (x y\right )+x y^{2} \cos \left (x y\right )\right ) y^{\prime } = 0 \]

1693

\[ {} {\mathrm e}^{x} \left (x^{2} y^{2}+2 x y^{2}\right )+6 x +\left (2 x^{2} y \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

1694

\[ {} x^{2} {\mathrm e}^{y+x^{2}} \left (2 x^{2}+3\right )+4 x +\left (x^{3} {\mathrm e}^{y+x^{2}}-12 y^{2}\right ) y^{\prime } = 0 \]

1695

\[ {} {\mathrm e}^{x y} \left (x^{4} y+4 x^{3}\right )+3 y+\left (x^{5} {\mathrm e}^{x y}+3 x \right ) y^{\prime } = 0 \]

1696

\[ {} 3 x^{2} \cos \left (x \right ) y-x^{3} y \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

1697

\[ {} 4 x^{3} y^{2}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime } = 0 \]

1704

\[ {} x^{3} y^{4}+x +\left (x^{4} y^{3}+y\right ) y^{\prime } = 0 \]

1706

\[ {} x^{3} y^{4}+2 x +\left (x^{4} y^{3}+3 y\right ) y^{\prime } = 0 \]

1708

\[ {} y^{\prime }+\frac {2 y}{x} = -\frac {2 x y}{x^{2}+2 x^{2} y+1} \]

1709

\[ {} y^{\prime }-\frac {3 y}{x} = \frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \]

1710

\[ {} y^{\prime }+2 x y = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \]

1719

\[ {} 6 x y^{2}+2 y+\left (12 x^{2} y+6 x +3\right ) y^{\prime } = 0 \]

1721

\[ {} 12 x^{3} y+24 x^{2} y^{2}+\left (9 x^{4}+32 x^{3} y+4 y\right ) y^{\prime } = 0 \]

1725

\[ {} 2 x y+y^{2}+\left (2 x y+x^{2}-2 x^{2} y^{2}-2 x y^{3}\right ) y^{\prime } = 0 \]

1730

\[ {} a \cos \left (x \right ) y-\sin \left (x \right ) y^{2}+\left (b \cos \left (x \right ) y-x \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

1733

\[ {} x^{4} y^{3}+y+\left (x^{5} y^{2}-x \right ) y^{\prime } = 0 \]

1734

\[ {} 3 x y+2 y^{2}+y+\left (x^{2}+2 x y+x +2 y\right ) y^{\prime } = 0 \]

1735

\[ {} 12 x y+6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime } = 0 \]

1742

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

1750

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

1752

\[ {} 4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+x \cos \left (x \right )\right ) y^{\prime }+\left (2 x \cos \left (x \right )+3 \sin \left (x \right )\right ) y = 0 \]

1753

\[ {} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\left (6 x -8\right ) y = 0 \]

1754

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

1755

\[ {} \left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

1756

\[ {} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

1757

\[ {} \left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} \]

1760

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

1762

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \left (1+4 x \right ) \]

1764

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 8 \,{\mathrm e}^{-x \left (x +2\right )} \]

1766

\[ {} x^{2} y^{\prime \prime }+2 x \left (x -1\right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y = x^{3} {\mathrm e}^{2 x} \]

1767

\[ {} x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y = x^{2} {\mathrm e}^{x} \]

1768

\[ {} \left (1-2 x \right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y = \left (4 x^{2}-4 x +1\right ) {\mathrm e}^{x} \]

1770

\[ {} 2 x y^{\prime \prime }+\left (1+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 3 \sqrt {x}\, {\mathrm e}^{-x} \]

1771

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = -{\mathrm e}^{-x} \]

1772

\[ {} 4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = 4 x^{{5}/{2}} {\mathrm e}^{2 x} \]

1774

\[ {} x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

1776

\[ {} x^{2} \ln \left (x \right )^{2} y^{\prime \prime }-2 x \ln \left (x \right ) y^{\prime }+\left (2+\ln \left (x \right )\right ) y = 0 \]

1778

\[ {} x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

1781

\[ {} x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

1782

\[ {} 4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+x \cos \left (x \right )\right ) y^{\prime }+\left (2 x \cos \left (x \right )+3 \sin \left (x \right )\right ) y = 0 \]

1784

\[ {} \left (2 x +1\right ) x y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

1785

\[ {} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

1786

\[ {} x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

1788

\[ {} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

1789

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y = \left (1+x \right )^{3} {\mathrm e}^{x} \]

1791

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = x +2 \]

1807

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}} \]

1812

\[ {} x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = {\mathrm e}^{2 x} \]

1813

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

1814

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 4 \,{\mathrm e}^{-x \left (x +2\right )} \]

1817

\[ {} \left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} {\mathrm e}^{-x} \]

1818

\[ {} 2 x y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (\sqrt {x}\right ) \]

1819

\[ {} x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

1821

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = \cos \left (x \right ) x^{3} \]

1822

\[ {} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

1823

\[ {} \sin \left (x \right ) y^{\prime \prime }+\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right )\right ) y = {\mathrm e}^{-x} \]

1824

\[ {} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}} \]

1825

\[ {} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}+3\right ) y = x^{{7}/{2}} \]

1826

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-\left (x^{2}-2\right ) y = 3 x^{4} \]

1827

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x} \]

1829

\[ {} x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x} \]

1830

\[ {} x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 2 \,{\mathrm e}^{x} x \]

1831

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = x^{4} \]

1832

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 2 \left (x -1\right )^{2} {\mathrm e}^{x} \]

1833

\[ {} 4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = x^{{5}/{2}} {\mathrm e}^{x} \]

1834

\[ {} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x} \]

1835

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2} \]

1836

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (1+x \right ) y = \left (x -1\right )^{3} {\mathrm e}^{x} \]

1837

\[ {} \left (x -1\right )^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

1839

\[ {} \left (1+x \right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]

1905

\[ {} \left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]

1945

\[ {} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (5 x^{2}+3 x +3\right ) y^{\prime }+y = 0 \]

1969

\[ {} 2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

2079

\[ {} x \left (1+x \right ) y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

2085

\[ {} x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y = 0 \]

2086

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y = 0 \]

2088

\[ {} x^{2} \left (2 x +1\right ) y^{\prime \prime }-x \left (9+8 x \right ) y^{\prime }-12 x y = 0 \]

2089

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

2090

\[ {} x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

2091

\[ {} x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

2098

\[ {} 9 x^{2} y^{\prime \prime }-3 x \left (2 x^{2}+11\right ) y^{\prime }+\left (10 x^{2}+13\right ) y = 0 \]

2103

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

2164

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x^{2}+4 x +3\right ) \]

2165

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+2 y = {\mathrm e}^{2 x} \left (x^{4}+x +24\right ) \]

2221

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+5 y^{\prime \prime }-2 y^{\prime } = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right ) \]

2290

\[ {} [y_{1}^{\prime }\left (t \right ) = -3 y_{1} \left (t \right )-3 y_{2} \left (t \right )+y_{3} \left (t \right ), y_{2}^{\prime }\left (t \right ) = 2 y_{2} \left (t \right )+2 y_{3} \left (t \right ), y_{3}^{\prime }\left (t \right ) = 5 y_{1} \left (t \right )+y_{2} \left (t \right )+y_{3} \left (t \right )] \]

2305

\[ {} \frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

2338

\[ {} 2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

2339

\[ {} 1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

2340

\[ {} \sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

2343

\[ {} 2 t \cos \left (y\right )+3 t^{2} y+\left (t^{3}-t^{2} \sin \left (y\right )-y\right ) y^{\prime } = 0 \]

2344

\[ {} 3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2345

\[ {} 2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]

2347

\[ {} y^{\prime } = y^{2}+\cos \left (t^{2}\right ) \]

2348

\[ {} y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2349

\[ {} y^{\prime } = t +y^{2} \]

2350

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2351

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2352

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2353

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]