14.31.4 problem 11

Internal problem ID [2823]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 4. Qualitative theory of differential equations. Section 4.6 (Qualitative properties of orbits). Page 417
Problem number : 11
Date solved : Sunday, March 30, 2025 at 12:33:09 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} z^{\prime \prime }+\frac {z}{1+z^{2}}&=0 \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 55
ode:=diff(diff(z(t),t),t)+z(t)/(1+z(t)^2) = 0; 
dsolve(ode,z(t), singsol=all);
 
\begin{align*} \int _{}^{z}\frac {1}{\sqrt {-\ln \left (\textit {\_a}^{2}+1\right )+c_1}}d \textit {\_a} -t -c_2 &= 0 \\ -\int _{}^{z}\frac {1}{\sqrt {-\ln \left (\textit {\_a}^{2}+1\right )+c_1}}d \textit {\_a} -t -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.325 (sec). Leaf size: 36
ode=D[z[t],{t,2}]+z[t]/(1+z[t]^2)==0; 
ic={}; 
DSolve[{ode,ic},z[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{z(t)}\frac {1}{\sqrt {c_1-\log \left (K[1]^2+1\right )}}dK[1]{}^2=(t+c_2){}^2,z(t)\right ] \]
Sympy
from sympy import * 
t = symbols("t") 
z = Function("z") 
ode = Eq(Derivative(z(t), (t, 2)) + z(t)/(z(t)**2 + 1),0) 
ics = {} 
dsolve(ode,func=z(t),ics=ics)
 
Timed Out