14.31.2 problem 9

Internal problem ID [2821]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 4. Qualitative theory of differential equations. Section 4.6 (Qualitative properties of orbits). Page 417
Problem number : 9
Date solved : Sunday, March 30, 2025 at 12:21:16 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} z^{\prime \prime }+z+z^{5}&=0 \end{align*}

Maple. Time used: 0.021 (sec). Leaf size: 65
ode:=diff(diff(z(t),t),t)+z(t)+z(t)^5 = 0; 
dsolve(ode,z(t), singsol=all);
 
\begin{align*} -3 \int _{}^{z}\frac {1}{\sqrt {-3 \textit {\_a}^{6}-9 \textit {\_a}^{2}+9 c_1}}d \textit {\_a} -t -c_2 &= 0 \\ 3 \int _{}^{z}\frac {1}{\sqrt {-3 \textit {\_a}^{6}-9 \textit {\_a}^{2}+9 c_1}}d \textit {\_a} -t -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 10.516 (sec). Leaf size: 353
ode=D[z[t],{t,2}]+z[t]+z[t]^5==0; 
ic={}; 
DSolve[{ode,ic},z[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [-\frac {\left (z(t)^2-\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,1\right ]\right ) \left (z(t)^2-\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,2\right ]\right ) \left (z(t)^2-\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,3\right ]\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {\left (\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,3\right ]-\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,1\right ]\right ) z(t)^2}{\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,3\right ] \left (z(t)^2-\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,1\right ]\right )}}\right ),\frac {\left (\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,1\right ]-\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,2\right ]\right ) \text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,3\right ]}{\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,2\right ] \left (\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,1\right ]-\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,3\right ]\right )}\right ){}^2}{\left (-\frac {1}{3} z(t)^6-z(t)^2+c_1\right ) \text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,2\right ] \left (\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,1\right ]-\text {Root}\left [\text {$\#$1}^3+3 \text {$\#$1}-3 c_1\&,3\right ]\right )}=(t+c_2){}^2,z(t)\right ] \]
Sympy
from sympy import * 
t = symbols("t") 
z = Function("z") 
ode = Eq(z(t)**5 + z(t) + Derivative(z(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=z(t),ics=ics)
 
Timed Out